Skip to main content
Log in

Evaluation of Chemical and Green Synthesized Iron Oxide Nanoparticles’ Associated Renal Toxicity in Different Experimental Models: A Comparative Study

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles occupy a significant class of inorganic nanoparticles with its very promising application in biosensors and bio-imaging. Physical and chemical methods have been used conventionally to prepare magnetic nanoparticles. However, these methods have its own limitations, which redirected recent research towards safe, clean and eco-friendly green synthesis approach. In our study, green magnetic iron oxide nanoparticles (FeNP DG) were prepared by using aqueous Desmodium gangeticum root extract as a reducing as well as a capping agent. Nanoparticles used in different biological milieu has to be explored for their toxicity before its application. Thus prepared nanoparticles were evaluated for its nephrotoxicity in Wistar rats (100 mg/kg b.wt), in renal epithelial cells, LLC PK1 (1 mg/ml) and isolated mitochondria (0.25, 0.5, 1 mg/ml) and compared it with the conventionally prepared iron oxide nanoparticles (FeNP Chem). Our study demonstrate that chemically prepared FeNPs are toxic to kidney and its epithelial cells.On the other hand, when the same nanoparticles were prepared by green route (FeNP DG) exhibited minimum toxicity measured via the renal markers in blood and urine along with cytotoxicity assay in LLC PK1 cells. But at mitochondrial level, both FeNP Chem and FeNP DG were found to be toxic to the organelle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. K. Andreas, R. Georgieva, M. Ladwig, S. Mueller, M. Notter, M. Sittinger, and J. Ringe (2012). Biomaterials 33, (18), 4515.

    Article  CAS  Google Scholar 

  2. S. C. McBain, H. H. Yiu, and J. Dobson (2008). Int. J. Nanomed. 3, (2), 169.

    CAS  Google Scholar 

  3. M. K. Yu, Y. Y. Jeong, J. Park, S. Park, J. W. Kim, J. J. Min, K. Kim, and S. Jon (2008). Angew. Chem. Int. Ed. Engl. 47, (29), 5362.

    Article  CAS  Google Scholar 

  4. N. A. Frey, S. Peng, K. Cheng, and S. Sun (2009). Chem. Soc. Rev. 38, (9), 2532.

    Article  CAS  Google Scholar 

  5. M. Mohapatra and S. Anand (2010). Int. J. Eng. Sci. Technol. 2, (8), 127.

    Google Scholar 

  6. A. Afkhami and R. Moosavi (2010). J. Hazard. Mater. 174, (1), 398.

    Article  CAS  Google Scholar 

  7. M. Tarantash, H. Nosrati, H. Kheiri Manjili, and A. Baradar Khoshfetrat (2018). Drug Dev. Ind. Pharm. 44, (11), 1895–1903.

    Article  CAS  Google Scholar 

  8. H. Nosrati, M. Salehiabar, H. Kheiri Manjili, S. Davaran, and H. Danafar (2018). Drug Dev. Ind. Pharm. 44, (10), 1668–1678.

    Article  CAS  Google Scholar 

  9. M. Salehiabar, H. Nosrati, E. Javani, F. Aliakbarzadeh, H. K. Manjili, S. Davaran, and H. Danafar (2018). Int. J. Biol. Macromol. 115, 83–89.

    Article  CAS  Google Scholar 

  10. H. Nosrati, A. Mojtahedi, H. Danafar, and H. Kheiri Manjili (2018). J. Biomed. Mater. Res. A 106, (6), 1646–1654.

    Article  CAS  Google Scholar 

  11. H. Nosrati, M. Salehiabar, E. Attari, S. Davaran, H. Danafar, and H. K. Manjili (2018). Appl. Organomet. Chem. 32, (2), e4069.

    Article  Google Scholar 

  12. M. Mahmoudi, S. Laurent, M. A. Shokrgozar, and M. Hosseinkhani (2011). ACS Nano 5, (9), 7263.

    Article  CAS  Google Scholar 

  13. N. Singh, G. J. Jenkins, B. C. Nelson, B. J. Marquis, T. G. Maffeis, A. P. Brown, P. M. Williams, C. J. Wright, and S. H. Doak (2012). Biomaterials 33, (1), 163.

    Article  CAS  Google Scholar 

  14. M. Sundrarajan and S. Gowri (2011). Chalcogenide Lett. 8, (8), 447.

    CAS  Google Scholar 

  15. G. Scarano and E. Morelli (2002). Biometals 15, (2), 145.

    Article  CAS  Google Scholar 

  16. A. Meyyappan, A. Shakila Banu, and G. A. Kurian (2015). Int. J Pharm. Pharm. Sci. 7, (13), 70.

    CAS  Google Scholar 

  17. C. G. Fraga, B. E. Leibovitz, and A. L. Tappel (1988). Free Rad. Biol. Med. 4, 155.

    Article  CAS  Google Scholar 

  18. J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, and W. G. Hoekstra (1973). Science 179, 588.

    Article  CAS  Google Scholar 

  19. B. Chance and N. Oshino (1971). Biochem. J. 122, 225.

    Article  CAS  Google Scholar 

  20. C. W. Cheng, L. Y. Chen, C. W. Chou, and J. Y. Liang (2015). J. Photochem. Photobiol., B 148, 262.

    Article  CAS  Google Scholar 

  21. S. Morgenstern, R. Flor, G. Kessler, and B. Klein (1965). Anal. Biochem. 13, (1), 149.

    Article  CAS  Google Scholar 

  22. T. Mosmann (1983). J. Immunol. Methods 65, 55.

    Article  CAS  Google Scholar 

  23. G. A. Kurian, N. Yagnesh, R. S. Kishan, and J. Paddikkala (2008). J. Pharm. Pharmacol. 60, (4), 523.

    Article  CAS  Google Scholar 

  24. W. P. Zeijlemaker, D. V. Dervartanian, C. Veeger, and E. C. Slater (1969). Biochim. Biophys. Acta 178, 213.

    Article  CAS  Google Scholar 

  25. M. J. Wimmer and J. H. Harrison (1975). J. Biol. Chem. 250, 8768.

    CAS  PubMed  Google Scholar 

  26. M. E. Cerdan, M. A. Serra, N. Lopez-Moratalla, and E. Santiago (1987). Rev. Esp. Fisiol. 43, 13.

    CAS  PubMed  Google Scholar 

  27. M. Alagumira, A. Shakila Banu, and K. A. Gino (2015). Int. J. Pharm. Pharm. Sci. 7, (1), 70.

    Google Scholar 

  28. M. I. Khan, A. Mohammad, G. Patil, S. A. Naqvi, L. K. Chauhan, and I. Ahmad (2012). Biomaterials 33, (5), 1477.

    Article  CAS  Google Scholar 

  29. G. A. Kurian and J. Paddikkala (2009). Indian J. Exp. Biol. 47, (2), 129.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Vice Chancellor, SASTRA University. This study was partly supported by grants from the Department of Science and Technology (INSPIRE), New Delhi, India (No: DST/INSPIRE Fellowship/2013/326). We would like to thank Dr. C David Raj for his assistance during animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino A. Kurian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahalakshmi, A., Kurian, G.A. Evaluation of Chemical and Green Synthesized Iron Oxide Nanoparticles’ Associated Renal Toxicity in Different Experimental Models: A Comparative Study. J Clust Sci 30, 343–350 (2019). https://doi.org/10.1007/s10876-018-01492-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-01492-6

Keywords

Navigation