Skip to main content
Log in

Nephrotoxicity, Hepatotoxicity, and Blood Viscoelasticity Induced by Nickel Nanoparticles in Albino Rats

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Despite the documented adverse impacts of nanoparticles (NPs) on the environment and human health, their application in nanomedicine is expanding. Because nickel compounds are very toxic to the liver and kidney and can cause cancer, it is important to research how they affect human health. The effects of spherical nickel nanoparticles (Ni-NPs) on kidney and liver functions were demonstrated in the current investigation. Twenty male albino rats were separated into two groups. The first group was used as a control group, which received only 0.9% sodium chloride, while the other group II, the rats, were orally administered Ni-NPs at a concentration of 50 mg/kg body weight by gavage three times a week for 4 consecutive weeks got. The animal’s blood, liver, and kidney samples were taken and analyzed for cell structure and function. The nephrotoxic effect of Ni-NPs and its correlation to the oxidative state have been studied using standard diagnostic techniques such as biochemical testing and histopathology. Tissue biochemical analysis of malondialdehyde (MDA), catalase (CAT), reduced glutathione (GSH), and superoxide dismutase (SOD) was recorded in the liver and kidney. The Ni-NP-treated group refers to the impaired kidney functions resulting from deposit of Ni-NPs in the kidney and the oxidative stress of the liver. Ni-NPs induce changes in histopathology and ultrastructure in liver and kidney tissue. The conductivity has much higher values for the treated group compared with the control group; this is an indicator that Ni-NPs are affected in the blood condition in which blood hemolysis occurs, consequently anemic disease. Ni-NPs induce DNA damage through generation of reactive oxidative stress (ROS), nephrotoxic effects, lipid peroxidation, and inflammation, and also induced an increase in blood viscosity, showing platelet clumps, hepatotoxicity, inflammation, fatty changes in liver, and histopathological changes in liver and kidney tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Materials

The authors declare that all relevant data of this study are included in the article.

Abbreviations

Ni-NPs:

Nickel nanoparticles

MDA:

Malondialdehyde

CAT:

Catalase

GSH:

Glutathione peroxidase

SOD:

Superoxide dismutase

DNA:

Deoxyribonucleic acid

PT:

Plasma tubule cells

ROS:

Reactive oxygen species

TEM:

Transmission electron microscopy

8-OHDG:

8-Hydroxyl-2doxyguanosine

5-NT:

5-Nucleotidase

RBCs:

Red blood cells

CV:

Central vein

BS:

Blood sinusoids

LI:

Leucocyte infiltration

BD:

Bile ductules

P:

Pyknotic

KH:

Karyorrhectic

BS:

Blood sinusoid

KC:

Kupffer cells

NF-KB:

Nuclear factor kappa B

References

  1. Hoeijmakers, J. H. J. (2012). The key role of DNA damage on cancer, aging and longevity. Environ. Mol. Mutagenesis, 53, S13. https://doi.org/10.1093/carcin/bgaa114

    Article  Google Scholar 

  2. Schiewer, M. J., & Knudsen, K. E. (2019). DNA damage response in prostate cancer. CSH Perspect. Med, 9, a030486. https://doi.org/10.1101/cshperspect.a030486

    Article  Google Scholar 

  3. Lord, C. J., & Ashworth, A. (2012). The DNA damage response and cancer therapy. Nature, 481, 287–294. https://doi.org/10.1038/nature10760

    Article  Google Scholar 

  4. Basu, A. K. (2018). DNA damage, mutagenesis and cancer. International Journal of Molecular Sciences, 19, 970. https://doi.org/10.3390/ijms19040970

    Article  Google Scholar 

  5. Hoeijmakers, J. H. J. (2009). DNA damage, aging, and cancer. New England Journal of Medicine, 361, 1914. https://doi.org/10.1093/carcin/bgaa114

    Article  Google Scholar 

  6. Doll, R. (1984). Nickel exposure: A human health hazard. IARC Scientific Publications, 53, 3–21.

    Google Scholar 

  7. Nali, T., Salmani, F., & Naseri, K. (2019). Dietary intake of cadmium, chromium, copper, nickel, and lead through the consumption of meat, liver, and kidney and assessment of human health risk in birjand, southeast of Iran. Biological Trace Element Research, 191, 338–347. https://doi.org/10.1007/s12011-019-1637-6

    Article  Google Scholar 

  8. Haber, L. T., Erdreicht, L., Diamond, G. L., Maier, A. M., et al. (2000). Hazard identification and dose response of inhaled nickel-soluble salts. Regul Toxicol Pharmacol, 31, 210–230. https://doi.org/10.1006/rtph.2000.1377

    Article  Google Scholar 

  9. Das, K. K., Das, S. N., & Dhundasi, S. A. (2008). Nickel, its adverse health effects & oxidative stress. Indian J. Med. Res, 128, 412–425. https://doi.org/10.2174/0929867053764635

    Article  Google Scholar 

  10. Nakamura, H., & Watano, S. (2018). Direct permeation of nanoparticles across cell membrane: A review. KONA Powder and Particle Journal, 35, 49–65. https://doi.org/10.14356/kona.2018011

    Article  Google Scholar 

  11. Chen, P., Zhang, Z., Xing, J., Gu, N., & Ji, M. (2017). Physicochemical properties of nanoparticles affect translocation across pulmonary surfactant monolayer. Molecular Physics, 115, 3143–3154. https://doi.org/10.1080/00268976.2017.1351005

    Article  Google Scholar 

  12. Ding, D., Liu, K., Fan, Q., et al. (2018). Nickel nanoparticles individually encapsulated in densified ceramic shells for thermally stable solar energy absorption. J Mater Chem A, 7, 3039–3045. https://doi.org/10.1039/C8TA10690H

    Article  Google Scholar 

  13. Shahzad, R., Waqas, M., Khan, A. L., Asaf, S., et al. (2016). Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Phymsiology and Biochemistry, 106, 236–243. https://doi.org/10.1016/j.plaphy.2016.05.006

    Article  Google Scholar 

  14. Zambelli, B., Uversky, V. N., & Ciurli, S. (2016). Nickel impact on human health: An intrinsic disorder perspective. Biochimica et Biophysica Acta, 1864(12), 1714–1731. https://doi.org/10.1016/j.bbapap.2016.09.008

    Article  Google Scholar 

  15. Salnikow, K., & Zhitkovich, A. (2008). Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis:Nickel, arsenic, and chromium. Chemical Research in Toxicology, 21, 28–44. https://doi.org/10.1021/tx700198a

    Article  Google Scholar 

  16. Nakamura, H., & Watano, S. (2018). Direct permeation of nanoparticles across cell membrane: A review. KONA Powder Particle Journal, 35, 49–65. https://doi.org/10.14356/kona.2018011

    Article  Google Scholar 

  17. Zhang, Q., Kusaka, Y., Zhu, X., Sato, K., Mo, et al. (2003). Comparative toxicity of standard nickel and ultrafine nickel in lung after intratracheal instillation. J. Occup. Health, 45(1), 23–30. https://doi.org/10.1539/joh.45.23

    Article  Google Scholar 

  18. Sivulka, D. J. (2005). Assessment of respiratory carcinogenicity associated with exposure to metallic nickel: A review. Regulatory Toxicology and Pharmacology, 43, 117–133. https://doi.org/10.1016/j.yrtph.2005.06.014

    Article  Google Scholar 

  19. Ma, C., Songb, M., Zhang, Y., et al. (2014). Nickel nanowires induce cell cycle arrest and apoptosis by generation of reactive oxygen species in HeLa cells. Toxicology Reports, 1, 114–121. https://doi.org/10.1016/j.toxrep.2014.04.008

    Article  Google Scholar 

  20. Magaye, R. R., Yue, X., Zou, B., Shi, H., et al. (2014). Acute toxicity of nickel nanoparticles in rats after intravenous injection. Int J Nanomed, 9, 1393–1402. https://doi.org/10.2147/IJN.S56212

    Article  Google Scholar 

  21. Magaye, R., Zhou, Q., Bowman, L., Zou, B., et al. (2014). Metallic nickel nanoparticles may exhibit higher carcinogenic potential than fine particles in JB6 cells. PLoS One, 9(4), e92418. https://doi.org/10.1371/journal.pone.0092418

    Article  Google Scholar 

  22. Stine, J. G., & Lewis, J. H. (2016). Current and future directions in the treatment and prevention of drug-induced liver injury: A systematic review. Expert Review of Gastroenterology & Hepatology, 10(4), 517–536. https://doi.org/10.1586/17474124.2016.1127756

    Article  Google Scholar 

  23. Pari, L., & Prasath, A. (2008). Efficacy of caffeic acid in preventing nickel induced oxidative damage in liver of rats. Chem Biol Interact, 173, 77–83. https://doi.org/10.1016/j.cbi.2008.02.010

    Article  Google Scholar 

  24. Abdulqadir, S. Z., & Aziz, F. M. (2019). Internalization and effects on cellular ultrastructure of nickel nanoparticles in rat kidneys. International Journal of Nanomedicine, 14, 3995–4005. https://doi.org/10.2147/IJN.S200909

    Article  Google Scholar 

  25. Ahamed, M., Ali, D., Alhadlaq, H. A., & Akhtar, M. J. (2013). Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Chemosphere, 93, 2514–2522. https://doi.org/10.1016/j.chemosphere.2013.09.047

    Article  Google Scholar 

  26. Ahmad, J., Alhadlaq, H. A., Siddiqui, M. A., Saquib, Q., et al. (2015). Concentration-dependent induction of reactive oxygen species, cell cycle arrest and apoptosis in human liver cells after nickel nanoparticles exposure. Environmental Toxicology, 30, 137–148. https://doi.org/10.1002/tox.21879

    Article  Google Scholar 

  27. Magaye, R. R., Yue, X., Zo, B., Shi, H., et al. (2014). acute toxicity of nickel nanoparticles in rats after intravenous injection. Int J Nanomedicine, 9, 1393–1402. https://doi.org/10.2147/IJN.S56212

    Article  Google Scholar 

  28. Katsnelson, B. A., Minigaliyeva, I. A., Panov, V. G., Privalova, L. I., et al. (2015). Some patterns of metallic nanoparticles’ combined subchronic toxicity as exemplified by a combination of nickel and manganese oxide nanoparticles. Food Chem Toxicol, 86, 351–364. https://doi.org/10.1016/j.fct.2015.11.012

    Article  Google Scholar 

  29. Yu, S., Liu, F., Wang, C., Zhang, J., et al. (2018). Role of oxidative stress in liver toxicity induced by nickel nanoparticles in rats. Molecular Medicine Reports, 17, 3133–3139. https://doi.org/10.3892/mmr.2017.8226

    Article  Google Scholar 

  30. Razavipour, S. T., Behnammorshedi, M., Razavipour, R., et al. (2015). The toxic effect of nickel nanoparticles on oxidative stress and inflammatory markers. Biomedical Research, 26(2), 370–374.

    Google Scholar 

  31. Abudayyak, M., Guzel, E., & Özhan, G. (2017). Nickel oxide nanoparticles induce oxidative DNA damage and apoptosis in kidney cell line (NRK-52E). Biol Trace Elem Res, 178, 98–104. https://doi.org/10.1007/s12011-016-0892-z

    Article  Google Scholar 

  32. Zhang, H., & Sun, S. (2015). NF-kB in inflammation and renal diseases. Cell Biosci, 5, 63–72. https://doi.org/10.1186/s13578-015-0056-4

    Article  Google Scholar 

  33. S.Z. Abdulqadir,S.Z., and Aziz F.M.,(2019). Hepatotoxicity of nickel nanoparticles in rats Indian J Anim Res https://doi.org/10.18805/ijar. B-1100 Print ISSN:0367–6722 / Online ISSN:0976–0555

  34. Garipi, A., Aksu, B., Akan, Z., Akakin, D., et al. (2011). Effect of extremely low frequency electromagnetic fields on growth rate and morphology of bacteria. International Journal of Radiation Biology, 87(12), 1155–1161.

    Article  Google Scholar 

  35. Ali, F. M., Mohamed, W. S., & Mohamed, M. R. (2003). Effect of 50 Hz, 0.2 mT magnetic fields on RBC properties and heart functions of albino rats. Bioelectromagnetics, 24, 535–545. https://doi.org/10.1002/bem.10134

    Article  Google Scholar 

  36. Wells, R. E., Denton, R., & Merrill, E. W. (1961). Measurement of viscosity of biologic fluids by cone plate viscometer. Journal of Laboratory and Clinical Medicine, 57, 646–656. https://doi.org/10.1248/cpb.34.4844

    Article  Google Scholar 

  37. Patlolla, A. K., Barnes, C., Yedjou, C., Velma, V. R., Paul, B., & Tchounwou, P. B. (2009). Oxidative stress, DNA damage, and antioxidant enzyme activity induced by hexavalent chromium in Sprague-Dawley Rats. Environ Toxicol., 24(1), 66–73.

    Article  Google Scholar 

  38. Ali, F.M., A, Gawish, A. M., Osman, M. B.S., Abdelbacki A. M., & El-Sharkawy., A.H. (2012). Control of Salmonella activity in rats by pulsed ELF magnetic field (In Vivo Study). Journal of International Dental and Medical Research, 5(2),129–135. http://www.ektodermaldisplazi.com/journal.htm

  39. Orchard, G., & Nation, B. (2018). Histopathology. In Fundamentals of biomedical science (2nd Ed., pp. 520). Oxford.. https://global.oup.com/uk/orc/biosciences/biomed/orchard2e/

  40. Dayani, M., Fathpour, H., & Naghsh, N. (2014). The effect of silver nanoparticles and thioacetamide on blood urea nitrogen and creatinine in male laboratory mice. International Journal of Biosciences, 4(1), 139–142. http://journal.skums.ac.ir/article-1-2203-fa.html

  41. Griffitt, R. J., Luo, J., Gao, J., Bonzongo, J. C., & Barber, D. S. (2008). Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environmental Toxicology and Chemistry, 27(9), 1972–1978. https://doi.org/10.1897/08-002.1

  42. Ispas, C., Andreescu, D., Patel, A., Goia, D. V., et al. (2009). Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. Environmental Science and Technology, 43, 6349–6356. August, 2009. https://doi.org/10.1021/es9010543

  43. Carocci, A., Catalano, A., Lauria, G., et al. (2016). A review on mercury toxicity in food. In Food Toxicology; Debasis, B., Anand, S., Stohs, S.J., Eds.; CRC Press: Boca Raton, FL, USA, 2016; Chapter 16; pp. 315–326. https://doi.org/10.1201/9781315371443-17

  44. Zambelli, B., & Ciurli, S. (2013). Nickel and human health. Met. Ions Life Sci, 13, 321–357. https://doi.org/10.3390/ijerph17030679

    Article  Google Scholar 

  45. Seilkop, S. K., & Oller, A. R. (2003). Respiratory cancer risks associated with low-level nickel exposure: An integrated assessment based on animal, epidemiological, and mechanistic data. Regul. Toxicol. Pharm, 37, 173–190. https://doi.org/10.1016/S0273-2300(02)00029-6

    Article  Google Scholar 

  46. Cao, L., Du, J., Ding, W., Jia, R., et al. (2016). Hepatoprotective and antioxidant effects of dietary Angelica sinensis extract against carbon tetrachloride-induced hepatic injury in Jian Carp (Cyprinus carpio var. Jian). Aquaculture Research, 47, 1852–1863. https://doi.org/10.1111/are.12643

    Article  Google Scholar 

  47. Guo, H., Liu, H., Wu, H., Cui, H., et al. (2019). Nickel carcinogenesis mechanism: DNA damage. International Journal of Molecular Sciences, 20(19), 4690. https://doi.org/10.3390/ijms20194690

    Article  Google Scholar 

  48. Yaqub, A., Anjum, K., Munir, A., Mukhtar, H., & Khan, W. (2018). Evaluation of acute toxicity and effects of sub-acute concentrations of copper oxide nanoparticles (CuO-NPs) on hematology, selected enzymes and histopathology of liver and kidney in Mus musculus. Indian Journal of Animal Research, 52(1), 92–98. https://doi.org/10.18805/ijar.v0iOF.8489

    Article  Google Scholar 

  49. El Shahat, A. N., El Shennawy, H. M., & Abd El Megid, M. A. (2017). Studying the protective effect of gamma-irradiated basil (Ocimum basilicum L.) against methotrexate induced liver and renal toxicity in rats. Indian J Anim Res, 51(1), 135–140. https://doi.org/10.18805/ijar.9631

    Article  Google Scholar 

  50. Morsy, G., & Elkon, N. (2014). Bioaccumulation of nickel nanopowder and evaluation of possible toxicity in male albino rats. Egyptian Journal of Zoology, 6, 275–299. https://doi.org/10.12816/0005519

    Article  Google Scholar 

  51. Abdelhalim, M. A., Moussa, S. A., & Qaid, H. A. (2018). The protective role of quercetin and arginine on gold nanoparticles induced hepatotoxicity in rats. Int J Nano, 13, 2821–2825. https://doi.org/10.2147/IJN.S160995

    Article  Google Scholar 

  52. Tammam, A.A., Khalaf, A.A., Zaki A.R., Khalifa M.M., Ibrahim M.A., et al.(2022).Hesperidin protects rats’ liver and kidney from oxidative damage and physiological disruption induced by nickel oxide nanoparticles. Frontiers in Psychology, 19:13,912625. https://doi.org/10.3389/fphys.2022.912625. PMID: 36338490; PMCID: PMC9626958.”

  53. Kim, Y. S., Kim, J. S., Cho, H. S., Rha, D. S., et al. (2008). Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicology, 20(6), 575–583. https://doi.org/10.1080/08958370701874663

    Article  Google Scholar 

  54. Zuckerman, J. E., Gale, A., Wu, P., et al. (2015). siRNA delivery to the glomerular mesangium using polycationic cyclodextrin nanoparticles containing siRNA. Nucleic Acid Therap, 25(2), 53–64. https://doi.org/10.1089/nat.2014.0505

    Article  Google Scholar 

  55. Patri, A., Umbreit, T., Zheng, J., Nagashima, K., et al. (2009). Energy dispersive X-ray analysis of titanium dioxide nanoparticle distribution after intravenous and subcutaneous injection in mice.J. Appl. Toxicol, 29, 662–672. https://doi.org/10.1002/jat.1454

    Article  Google Scholar 

  56. Fontana, L., Leso, V., Marinaccio, A., Cenacchi, G., et al. (2015). The effects of palladium nanoparticles on the renal function of female wistar rats. Nanotoxicology, 9(7), 843–851. https://doi.org/10.3109/17435390.2014.980759

    Article  Google Scholar 

  57. Attia, A. (2014). Evaluation of the testicular alterations induced by silver nanoparticles in male mice: Biochemical, histological and ultrastructural studies. Res. J. Pharmac. Biol. And Chem, 5(4), 1558–1589.

    MathSciNet  Google Scholar 

  58. Tiwari, R., Singh, R. D., Khan, H., et al. (2017). Oral subchronic exposure to silver nanoparticles causes renal damage through apoptotic impairment and necrotic cell death. Nanotoxicol, 11, 671–686. https://doi.org/10.1080/17435390.2017.1343874

    Article  Google Scholar 

  59. Xu, X., Lai, Y., & Hua Z., (2019). Apoptosis and apoptotic body: Disease message and therapeutic target potentials. Biosci Rep, 39(1). 10.1042/BSR20180992

  60. Aitken, R. J., & Roman, S. D. (2008). Antioxidant systems and oxidative stress in the testes. Oxidative Medicine and Cellular Longevity, 1(1), 15–24.

    Article  Google Scholar 

  61. Dumala, N., Mangalampalli, B., Srinivas, S., Kamal, K., & Grover, P. (2018). Biochemical alterations induced by nickel oxide nanoparticles in female Wistar albino rats after acute oral exposure. Biomarkers, 23(1), 33–43. https://doi.org/10.1080/1354750X.2017.1360943

    Article  Google Scholar 

  62. Kim, S., & Ryu, D. Y. (2013). Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. Journal of Applied Toxicology, 33, 78–89. https://doi.org/10.1002/jat.2792

    Article  Google Scholar 

  63. Capasso, L., Camatini, M., & Gualtieri, M. (2014). Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells. Toxicology Letters, 226(1), 28–34. https://doi.org/10.1016/j.toxlet.2014.01.040

    Article  Google Scholar 

  64. Arauz, J., Ramos-Tovar, E., & Muriel, P. (2016). Redox state and methods to evaluate oxidative stress in liver damage: From bench to bedside. Annals of Hepatology, 15(2), 160–173. https://doi.org/10.5604/16652681.1193701

    Article  Google Scholar 

  65. Gustafson, H. H., Holt-Casper, D., Grainger, D. W., & Ghandehari, H. (2015). Nanoparticle uptake: The phagocyte problem. Nano Today, 10(4), 487–510. https://doi.org/10.1016/j.nantod.2015.06.006

    Article  Google Scholar 

  66. Berrahal, A., Lasram, M., ElElj, N., Kerkeni, A., Gharb, I. N., & El-Fazaa, S. (2011). Effect of age-dependent exposure to lead on hepatotoxicity and nephrotoxicity in male rats. Environmental Toxicology, 26(1), 68. https://doi.org/10.1002/tox.20530

    Article  Google Scholar 

  67. Ames, B. N., Shigenaga, M. K., & Hagen, T. M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National academy of Sciences of the United States of America, 90, 7915–7922. https://doi.org/10.1073/pnas.90.17.7915

    Article  Google Scholar 

  68. Shigenaga, M. K., Gimeno, C. J., & Ames, B. N. (1989). Urinary 8-hydroxy-2′- deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proceedings of the National academy of Sciences of the United States of America, 86, 9697–9701. https://doi.org/10.1073/pnas.86.24.9697

    Article  Google Scholar 

  69. Halliwell, B. (2000). Why and how should we measure oxidative damage in nutritional studies? How far could you come? American Journal of Clinical Nutrition, 72, 1082–1087. https://doi.org/10.1093/ajcn/72.5.1082

    Article  Google Scholar 

  70. Kasai, H. (1997). Analysis of a form of oxidative DNA damage 8-hydroxy-2’-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutation Research, 387, 147–163. https://doi.org/10.1016/s1383-5742(97)00035-5

    Article  Google Scholar 

  71. Rim, K. T., Song, S. W., & Kim, H. Y. (2013). Oxidative DNA damage from nanoparticle exposure and its application to workers’ health: A literature review. Safety and health at work, 4(4), 177–186. https://doi.org/10.1016/j.shaw.2013.07.006

    Article  Google Scholar 

  72. Steven, A., Lowe, J., Scott,I.,& Dam, Janov., I. Core pathology .3thed. Elsevier. China:442–443. ISBN: 978–0–7234–3444–3

Download references

Acknowledgements

The authors thank the Faculty of Science, Physics Department, Damanhour University, Egypt.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Sahar Abo-Neima, and Hadeer El-Sayed. Also, they carried out 5 ribonuclieotidase, 8-Hydroxy2′-Deoxyguanosine Experiment, biochemical analysis of tissue, histology, and Electron microscopy analysis of the liver. Sahar Abo-Neima studied dielectric relaxation for liver and kidney tissues, blood viscosity, blood film, and tissue conductivity. Noha Samak carried out the histopathology of the kidney. The first draft of the manuscript was written by Sahar Abo-Neima. Mostafa El-Sheekh supervised the work. The final version of the manuscript was revised and edited by Mostafa El-Sheekh. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mostafa M. El-Sheekh.

Ethics declarations

Ethical Approval

This study was approved by the Scientific Induction Ethics Committee of Damanhour University by code number DMU-SCI-CSRE (22–10-02), and guidelines for the human care of animals were applied.

Consent to Participate

Not applicable.

Consent for Publication

All authors agree to publish this work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abo-Neima, S.E., El-Sheekh, M.M., Samak, N.M. et al. Nephrotoxicity, Hepatotoxicity, and Blood Viscoelasticity Induced by Nickel Nanoparticles in Albino Rats. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01421-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01421-0

Keywords

Navigation