Skip to main content
Log in

A Versatile Route for the Synthesis of Iron Oxide Nanostructures by Electrochemical Reduction Method and Their Antibacterial Application

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Nanoscience is one of the most important research in modern science. The preparation of monodisperse-sized nanocrystals is very important because the properties of these nanocrystals depend strongly on their dimensions. The preparation of monodisperse-sized nanocrystals with controllable sizes is very important to characterize the size-dependent physicochemical properties of nanocrystals. Iron, the most ubiquitous of the transition metals and the fourth most plentiful element in the Earths crust, is the structural backbone of our modern infrastructure. The nanostructured iron oxide (IONPs) were synthesized by electrochemical reduction method using tetra octyl ammonium bromide as structure directing agent in an organic medium viz. tetra hydro furan and acetonitrile in 1:4 ratio by optimizing current density 12 mA/cm2. Such nanoparticles were prepared using simple electrolysis cell in which the sacrificial anode was as a commercially available iron metal sheet and platinum (inert) sheet acted as a cathode. The synthesized iron oxide nanoparticles were characterized by using ultra violet–visible spectroscopy, infra red spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and transmission electron microscope analysis techniques. The nanoparticles were tested for antibacterial activity against human pathogens like gram negative Escherichia coli, Salmonella typhi and gram positive Staphylococcus aureus, Bacillus subtilis strains, which showed excellent antibacterial properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Elumalai, T. Prasad, J. Hemachandran, T. S. Viviyan, T. Thirumalai, and E. David (2010). J. Pharm. Sci. Res. 2, (9), 549–554.

    CAS  Google Scholar 

  2. A. Singh, R. Patil, M. Kasture, W. Gade, and B. Prasad (2009). Colloids Surf. B 69, (2), 239–245.

    Article  CAS  Google Scholar 

  3. D. L. Huber (2009). Small 1, 482.

    Article  Google Scholar 

  4. X. Zhang, R. Zhou, W. Rao, Shanghai 201800 PR China SPRC, and Shanghai 201800 PR C SPR (2006). J. Radioanal. Nucl. Chem. 270, (2), 285–289.

    Article  CAS  Google Scholar 

  5. J. Barta, M. Pospısil, and V. Cuba (2010). J. Radioanal. Nucl. Chem. 286, (3), 611–618.

    Article  CAS  Google Scholar 

  6. Y. Sun, Q. Wang, S. Yang, G. Sheng, and Z. Guo (2011). J. Radioanal. Nucl. Chem. 290, 643–648.

    Article  CAS  Google Scholar 

  7. G. Ozin (1996). Science 271, 920–941.

    Article  Google Scholar 

  8. H. Iida, K. Takayanagi, T. Nakanishi, and T. Osaka (2007). J. Colloid Interface Sci. 314, 274–280.

    Article  CAS  Google Scholar 

  9. V. Amendola, P. Riello, and M. Meneghetti (2011). J. Phys. Chem. 115, (12), 5140–5146.

    CAS  Google Scholar 

  10. D. Luo, G. Zhang, J. Liu, and X. Sun (2011). J. Phys. Chem. C. 115, 11327–11335.

    Article  CAS  Google Scholar 

  11. M. Quintana, E. Vazquez, and M. Prato (2012). Acc. Chem. Res. 46, 138–148.

    Article  Google Scholar 

  12. P. Stoimenov, R. Klinger, G. Marchin, and K. Klabunde (2002). Langmuir 18, 6679.

    Article  CAS  Google Scholar 

  13. R. Jong, J. Seung, D. Jong, and C. Sung (2004). Phys. Status Solidi 241, 593.

    Google Scholar 

  14. W. Wu, Q. He, and C. Jiang (2008). Nanoscale Res. Lett. 3, 397–415.

    Article  CAS  Google Scholar 

  15. I. Battisha, H. Afify, and M. Ibrahim (2006). J. Magn. Magn. Mater. 306, 211.

    Article  CAS  Google Scholar 

  16. J. Toniolo, A. S. Takimi, M. J. Andrade, R. Bonadiman, and C. P. Bergmann (2007). J. Mater. Sci. 42, 4785.

    Article  CAS  Google Scholar 

  17. V. Chhobro, P. Ayyub, and S. Chattopadhyay (1996). Mater. Lett. 26, 21.

    Article  Google Scholar 

  18. A. Kay, I. Cesar, and M. Graetzel (2006). J. Am. Chem. Soc. 128, 15714–15721.

    Article  CAS  Google Scholar 

  19. R. J. Madon and W. F. Taylor (1981). J. Catal. 69, 32–43.

    Article  CAS  Google Scholar 

  20. M. Azeez, A. Lateef, T. Asafa, T. Yekeen, A. Akinboro, I. Oladipo, E. Gueguim-Kana, and L. Beukes (2016). J. Cluster Sci., 1–16.

  21. M. Patil, A. Rokade, D. Ngabire, and G. Kim (2016). J. Cluster Sci. 27, (5), 1737–1750.

    Article  CAS  Google Scholar 

  22. G. Benelli (2016). a review. Parasitol. Res. 115, (1), 23–34.

    Article  Google Scholar 

  23. A. H. Lu, E. L. Salabas, and F. Schuth (2007). Angew. Chem. Int. Ed. 46, 1222–1245.

    Article  CAS  Google Scholar 

  24. H. Zeng and S. Sun (2008). Adv. Funct. Mater. 18, 391–400.

    Article  CAS  Google Scholar 

  25. A. Roca, R. Costo, A. Rebolledo, V. Verdaguer, S. Verdaguer, P. Tartaj, T. Gonzalez-Carreno, M. Morales, and C. Serna (2009). J. Phys. D 42, 224002–224012.

    Article  Google Scholar 

  26. Y. Hou, H. Kondoh, M. Shimojo, T. Kogure, and T. Ohta (2005). J. Phys. Chem. B 109, 19094.

    Article  CAS  Google Scholar 

  27. K. Murugan, C. Panneerselvam, J. Subramaniam, P. Madhiyazhagan, J. S. Hwang, L. Wang, et al (2016). Environ. Sci. Pollut. Res., 1–15.

  28. K. Murugan, C. Samidoss, C. Panneerselvam, A. Higuchi, and M. Roni (2015). Parasitol. Res. 114, 4087–4097.

    Article  Google Scholar 

  29. X. Wang, X. Chen, L. Gao, H. Zheng, M. Ji, C. Tang, T. Shen, and Z. Zhang (2004). J. Mater. Chem. 14, 905.

    Article  CAS  Google Scholar 

  30. F. Cai, G. Zhang, J. Chen, X. Gou, H. Liu, and S. Dou (2004). Angew. Chem. Int. Ed. 43, 4212.

    Article  CAS  Google Scholar 

  31. M. Reetz, W. Helbig, and S. A. Quaiser Active Metals (VCH, Weinheim, 1996), p. 279.

    Google Scholar 

  32. A. A. Agale, N. R. Digore, S. M. Janjal, S. T. Gaikwad, and A. S. Rajbhoj (2015). World J. Pharm. Res. 4, (12), 1159–1200.

    Google Scholar 

  33. X. Chen, Y. Lou, A. C. S. Samia, C. Burda, and J. M. Gole (2005). Adv. Funct. Mater. 15, 41–49.

    Article  CAS  Google Scholar 

  34. M. Reetz, R. Breinbauer, and K. Wanninger (1996). Tetrahedron Lett. 37, 4499.

    Article  CAS  Google Scholar 

  35. P. Scherrer (1918). Göttinger Nachrichten Gesell. 2, 98.

    Google Scholar 

  36. P. Christophe, L. Patricia, and P. Marie-Paule (1993). J. Phys. Chem. 97, 1297.

    Google Scholar 

  37. P. Madhiyazhagan, K. Murugan, A. NareshKumar, T. Nataraj, D. Dinesh, C. Panneerselvam, et al. (2015). Parasitol Res. 115, 651.

    Google Scholar 

  38. H. H. Thornberry (1950). Phytopathology 40, 419.

    CAS  Google Scholar 

  39. C. Mann and J. Markham (1998). J. Appl. Microbiol. 84, (4), 538–544.

    Article  CAS  Google Scholar 

  40. G. Tortora, R. B. Funke, and L. C. Case Microbiology: An Introduction (Addison-Wesley Longman Inc, New York, 2001).

    Google Scholar 

  41. D. Dinesh, K. Murugan, P. Madhiyazhagan, C. Panneerselvam, P. M. Kumar, M. Nicoletti, W. Jiang, G. Benelli, B. Chandramohan, and U. Suresh (2015). Parasitol. Res. 114, 1519.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful do Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad and UGC-SAP-DRS-1 scheme New Delhi for providing laboratory facility. One of the authors (ASR) thankful for financial assistance from Major Research project University Grants Commission, New Delhi. The author (AAA) is also thankful to the University Grants Commission, New Delhi for Rajiv Gandhi National Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali S. Rajbhoj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agale, A.A., Janjal, S.M., Gaikwad, S.T. et al. A Versatile Route for the Synthesis of Iron Oxide Nanostructures by Electrochemical Reduction Method and Their Antibacterial Application. J Clust Sci 28, 477–488 (2017). https://doi.org/10.1007/s10876-016-1118-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1118-4

Keywords

Navigation