Skip to main content
Log in

In hyperthyroid rats octylguanidine protects the heart from reperfusion damage

  • Original Paper
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Hyperthyroidism sensitizes the heart for reperfusion injury. As known, mitochondrial permeability transition underlies reperfusion heart damage. This study was undertaken to explore the protective effect of octylguanidine (OG), an inhibitor of permeability transition, on hearts from hyperthyroid rats subjected to ischemia/reperfusion. Hyperthyroidism was induced by a daily injection of 2 mg T3/kg body weight for 5 days. OG was injected at a dose of 5 mg/kg body weight. It was found that the amine protects against reperfusion-induced permeability transition, i.e., mitochondria from hyperthyroid rats, treated with OG, retained accumulated Ca2+, similarly to control mitochondria. OG maintained post reperfusion cardiac frequency in hyperthyroid rats at 429 ± 16 in comparison to control and T3 treated rats (70 ± 12 and 71 ± 2, respectively). We also found that OG diminished the post reperfusion accumulation of IFNγ from 34.3 ± 2.5 to 18.7 ± 1.35, IL-6 from 38.5 ± 4.5 to 15.1 ± 0.12, IL-1 from 16.78 ± 0.73 to 12.19 ± 1.54, and TNFα from 45.05 ± 3.14 to 29.85 ± 4.3 (pg/50 μg myocardial tissue). It is concluded that OG inhibits the hypersensitivity of the hyperthyroid myocardium to undergo reperfusion damage due to its inhibitory action on the permeability transition pore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K.A. Woeber, Thyrotoxicosis and the heart. N. Engl. J. Med. 327, 94–98 (1992)

    Article  CAS  PubMed  Google Scholar 

  2. I. Klein, G.S. Levey, The Cardiovascular System in Thyrotoxicosis, in The Thyroid, 8th edn., ed. by L.E. Braveman, R.D. Utiger (Lippicott-Raven, Philadelphia, 2000), pp. 596–604

    Google Scholar 

  3. T.M. Pillar, H.J. Seitz, Thyroid hormone and gene expression in the regulation of mitochondrial respiratory function. Eur. J. Endocrinol. 136, 231–239 (1997)

    Article  CAS  PubMed  Google Scholar 

  4. P. Venditti, S. Di Meo, Thyroid hormone-induced oxidative stress. Cell Mol. Life Sci. 63, 414–434 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. U.M. Schmidt-Ott, D.D. Ascheim, Thyroid hormone and the heart failure. Curr. Heart Fail. Rep. 3, 114–119 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. P. Venditti, A. Bari, L. Di Stefano, C. Agnisola, S. Di Meo, Effect of T3 treatment on the response to ischemia-reperfusion of heart preparations from sedentary and trained rats. Pflugers Arch. 455, 667–676 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. P. Masullo, P. Venditti, C. Agnisola, S. Di Meo, Role of nitric oxide in the reperfusion induced injury in hyperthyroid rat hearts. Free Radic. Res. 32, 411–421 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. Y. Kusana, M. Bernier, D.J. Hearse, Exacerbation of reperfusion arrhythmias by sudden oxidant stress. Circ. Res. 67, 481–489 (1990)

    Google Scholar 

  9. N.S. Dhalla, L. Golfman, S. Takeda, N. Takeda, M. Nagano, Evidence of oxidative stress in acute ischemic heart disease: a brief review. Can. J. Cardiol. 15, 587–593 (1999)

    CAS  PubMed  Google Scholar 

  10. W.W. Brooks, C.H. Conrad, J.P. Morgan, Reperfusion induced arrhythmias following ischemia in intact rat heart: role of intracellular calcium. Cardiovasc. Res. 29, 536–542 (1995)

    CAS  PubMed  Google Scholar 

  11. G.J. García-Rivas, K. Carvajal, F. Correa, C. Zazueta, Ru360, a specific mitochondrial calcium uptake inhibitor, improves cardiac post ischemic functional recovery in rats in vivo. Brit. J. Pharm. 149, 1188–1196 (2006)

    Article  Google Scholar 

  12. A.P. Halestrap, S.J. Clarke, S.A. Javadov, Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc. Res. 61, 372–385 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. T. Wajima, S. Shimizu, T. Hirió, M. Ishii, Y. Kiuchi, Reduction of myocardial infarct size by tetrahydrobiopterin: possible involvement of mitochondrial KATP channels activation through nitric oxide production. J. Cardiovasc. Pharmacol. 47, 243–249 (2006)

    Article  CAS  PubMed  Google Scholar 

  14. E. Chávez, M. Franco, H. Reyes-Vivas, C. Zazueta, J. Ramírez, R. Carrillo, Hypothyroidism renders liver mitochondria resistant to the opening of membrane permeability transition pore. Biochim. Biophys. Acta 1407, 243–248 (1998)

    PubMed  Google Scholar 

  15. I. Bobadilla, M. Franco, D. Cruz, J. Zamora, S.G. Robles, E. Chávez, Hypothyroidism provides resistance to reperfusion injury following myocardium ischemia. Int. J. Biochem. Cell. Biol. 33, 499–506 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. M. Schlame, K.Y. Hostetler, Cardiolipin synthase from mammalian mitochondria. Biochim. Biophys. Acta 1348, 207–213 (1997)

    CAS  PubMed  Google Scholar 

  17. K. Dummier, S. Muller, H.J. Seitz, Regulation of adenine nucleotide translocase and glycerol 3-phosphate dehydrogenase expression by thyroid hormones in different tissues. Biochem. J. 317, 913–918 (1996)

    Google Scholar 

  18. S.G. Robles, M. Franco, C. Zazueta, N. García, F. Correa, G. García, E. Chávez, Thyroid hormone may induce changes in the concentration of the mitochondrial calcium uniporter. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 135, 177–182 (2003)

    Article  PubMed  Google Scholar 

  19. V. Kalderon, O. Hermesh, J. Bar-Tana, Mitochondrial permeability transition is induced by in vivo thyroid hormone treatment. Endocrinology 136, 3552–3556 (1995)

    Article  CAS  PubMed  Google Scholar 

  20. A.D. Toft, N.A. Boon, Thyroid disease and the heart. Heart 84, 455–466 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. P. Venditti, C. Agnisola, S. Di Meo, Effect of ischemia-reperfusion on heart mitochondria from hyperthyroid rats. Cardiovasc. Res. 56, 76–85 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. R.F. Castilho, A.J. Kowaltoski, A.E. Vercesi, 3,5,3’-triiodothyronine induces mitochondrial permeability transition mediated by reactive oxygen species and membrane thiol oxidation. Arch. Biochem. Biophys. 354, 151–157 (1998)

    Article  CAS  PubMed  Google Scholar 

  23. A.S. Araujo, M.F. Ribeiro, A. Enzveiler, P. Schenkel, T.R. Fernández, W.A. Partada, M.C. Irigoyen, S. Llesuy, A. Belló-Klein, Myocardial antioxidant enzyme activities and concentration and glutathione metabolism in experimental hyperthyroidism. Mol. Cell. Endocrinol. 249, 133–139 (2006)

    CAS  PubMed  Google Scholar 

  24. F. Di Lisa, P. Bernardi, Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc. Res. 70, 191–199 (2006)

    Article  CAS  PubMed  Google Scholar 

  25. P. Bernardi, Mitochondrial transport of cations: Channels, exchangers, and permeability transition. Physiol. Rev. 79, 1127–1155 (1999)

    CAS  PubMed  Google Scholar 

  26. E. Chávez, A. Peña, C. Zazueta, J. Ramírez, N. García, R. Carrillo, Inactivation of mitochondrial permeability transition by octylguanidine and octylamine. J. Bioenerg. Biomembr. 32, 193–198 (2000)

    Article  PubMed  Google Scholar 

  27. E. Parra, D. Cruz, G. García, C. Zazueta, F. Correa, N. García, E. Chávez, Myocardial protective effect of octylguanidine against the damage induced by ischemia reperfusion in rat heart. Mol. Cell. Biochem. 269, 19–26 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. M. Klingenberg, Molecular aspects of the adenine nucleotide carrier from mitochondria. Arch. Biochem. Biophys. 270, 1–14 (1989)

    Article  CAS  PubMed  Google Scholar 

  29. D. Arteaga, A. Odor, R.M. López, G. Contreras, J. Pichardo, E. García, A. Aranda, E. Chávez, Impairment by cyclosporin A of reperfusion-induced arrhythmias. Life Sci. 51, 1127–1134 (1992)

    Article  CAS  PubMed  Google Scholar 

  30. F. Correa, V. Soto, C. Zazueta, Mitochondrial permeability transition relevance for apoptotic triggering in the post-ischemic heart. Int. J. Biochem. Cell. Biol. 39, 787–798 (2007)

    Article  CAS  PubMed  Google Scholar 

  31. L. Lanoye, P. Segers, V. Tchna-Sato, S. Rolin, J.M. Dogne, A. Guisen, B. Labernot, J. Hanson, T. Desaire, P. Verdonck, V. D’orio, P. Kolh, Cardiovascular control: cardiovascular haemodynamics and ventriculo-arterial coupling in an acute pig model of coronary ischemia-reperfusion. Exp. Phys. 92, 127–139 (2007)

    Article  Google Scholar 

  32. S.Y. Ngo, H.C. Chew, When the storm passes unnoticed—a case series of thyroid hormone. Resuscitation 73, 485–490 (2007)

    Article  PubMed  Google Scholar 

  33. M. Wang, B.M. Tsai, P.R. Crisostomo, D.R. Meldrum, Tumor necrosis factor receptor 1 signaling resistance in the female myocardium during ischemia. Circulation 114, 1282–1289 (2006)

    Article  Google Scholar 

  34. G. Gallagher, S. Menzie, Y. Huang, C. Jackson, S.N. Hunyor, Regional cardiac dysfunction is associated with specific alterations in inflammatory cytokines and matrix metalloproteinases after acute myocardial infarction in sheep. Basic Res. Cardiol. 102, 63–72 (2007)

    Article  CAS  PubMed  Google Scholar 

  35. A. Siddiqi, J.P. Monson, D.F. Wood, G.M. Basser, J.M. Burrin, Serum cytokines in thyrotoxicosis. Clin. Endocrinol. Metab. 84, 435–439 (1999)

    Article  CAS  Google Scholar 

  36. G. Hasko, D.G. Kuhgel, A. Marton, Z.H. Nemeth, E.A. Deitch, C. Szabó, Spermine differentially regulates the production of interleukin-12 p40 and interleukin-10 and suppresses the release of the helper 1 cytokine interferon-gamma. Shock 14, 144–149 (2000)

    Article  CAS  PubMed  Google Scholar 

  37. R. Phillips, H. Clarke, The preparation of alkylguanidines. J. Am. Chem. Soc. 45, 1755–1757 (1923)

    Article  CAS  Google Scholar 

  38. E. Chávez, F. Téllez, J. Pichardo, R. Milán, A. Cuellar, K. Carvajal, D. Cruz, On the protection by ketorolac of reperfusion-induced heart damage. Comp. Biochem. Physiol. 115C, 95–100 (1996)

    Google Scholar 

  39. E.A. Palmieri, G. Benincasa, F. Di Rella, C. Casaburi, M.G. Monti, G. De Simona, L. Chiarotti, L. Palombini, C.B. Bruni, L. Sácala, A. Cittadini, Differential expression of TNF-α, IL-6, and IGF-1 by graded mechanical stress in normal rat myocardium. Am. J. Physiol. 282, H925–H934 (2002)

    Google Scholar 

  40. F.J. Neumann, L. Ott, M. Gawaz, H. Holzaptel, M. Jochum, A. Schomig, Cardiac release of cytokines and inflammatory responses in acute myocardial infarction. Circulation 92, 748–755 (1995)

    CAS  PubMed  Google Scholar 

  41. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randal, Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 262–275 (1951)

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge the helpful expertise of Dr. Roberto Arreguín, from the Instituto de Química, UNAM, to verify the purity and mass of octylguanidine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmundo Chávez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavón, N., Aranda, A., García, N. et al. In hyperthyroid rats octylguanidine protects the heart from reperfusion damage. Endocr 35, 158–165 (2009). https://doi.org/10.1007/s12020-008-9144-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-008-9144-0

Keywords

Navigation