Skip to main content
Log in

Effects of ubiquinone derivatives on the mitochondrial unselective channel of Saccharomyces cerevisiae

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Ubiquinone derivatives modulate the mammalian mitochondrial Permeability Transition Pore (PTP). Yeast mitochondria harbor a similar structure: the respiration- and ATP-induced Saccharomyces cerevisiae Mitochondrial Unselective Channel ( Sc MUC). Here we show that decylubiquinone, a well-characterized inhibitor of the PTP, suppresses Sc MUC opening in diverse strains and independently of respiratory chain modulation or redox-state. We also found that naturally occurring derivatives such as hexaprenyl and decaprenyl ubiquinones lacked effects on the Sc MUC. The PTP-inactive ubiquinone 5 (Ub5) promoted the Sc MUC-independent activation of the respiratory chain in most strains tested. In an industrial strain however, Ub5 blocked the protection elicited by dUb. The results indicate the presence of a ubiquinone-binding site in the Sc MUC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

dUb:

Decylubiquinone

dVO4 :

Decavanadate

Δψ:

Mitochondrial transmembrane potential

FCCP:

Carbonyl cyanide p-trifluoro-methoxyphenyl-hydrazone

Cyclosporine A:

CsA

PTP:

Mitochondrial permeability transition pore

Sc MUC:

Saccharomyces cerevisiae mitochondrial unselective channel

Ub5 :

Ubiquinone 5

Ub30 :

Hexaprenylquinone

Ub50 :

Decaprenylquinone

References

  • Akerman KE, Wikström MK (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 68:191–197

    Article  CAS  Google Scholar 

  • Azzolin L, Von Stockum S, Basso E et al (2010) The mitochondrial permeability transition from yeast to mammals. FEBS Lett 584:2504–2509

    Article  CAS  Google Scholar 

  • Basso E, Fante L, Fowlkes J et al (2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem 280:18558–18561

    Article  CAS  Google Scholar 

  • Bernardi P (2013) The mitochondrial permeability transition pore: a mystery solved? Front Physiol 4:95

    Article  CAS  Google Scholar 

  • Bernardi P, Von Stockum S (2012) The permeability transition pore as a Ca2+ release channel: new answers to an old question. Cell Calcium 52:22–27

    Article  CAS  Google Scholar 

  • Bonora M, Bononi A, De Marchi E et al (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12:674–683

    Article  CAS  Google Scholar 

  • Bonora M, Wieckowski MR, Chinopoulos C, et al. (2014) Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene. doi:doi:10.1038/onc.2014.96

  • Bradshaw PC, Pfeiffer DR (2013) Characterization of the respiration-induced yeast mitochondrial permeability transition pore. Yeast 30:471–483

    Article  CAS  Google Scholar 

  • Brenner C, Moulin M (2012) Physiological roles of the permeability transition pore. Circ Res 111:1237–1247

    Article  CAS  Google Scholar 

  • Carraro M, Giorgio V, Sileikytė J, et al. (2014) Channel Formation by Yeast F-ATP Synthase and the Role of Dimerization in the Mitochondrial Permeability Transition. J Biol Chem 289:15980–15985

  • Castrejón V, Peña A, Uribe S (2002) Closure of the yeast mitochondria unselective channel (YMUC) unmasks a Mg2+ and quinine sensitive K+ uptake pathway in Saccharomyces cerevisiae. J Bioenerg Biomembr 34:299–306

    Article  Google Scholar 

  • Cortés P, Castrejón V, Sampedro JG, Uribe S (2000) Interactions of arsenate, sulfate and phosphate with yeast mitochondria. Biochim Biophys Acta 1456:67–76

    Article  Google Scholar 

  • de Kloet S, van Wermeskerken R, Koningsberger VV (1961) Studies on protein synthesis by protoplasts of Saccharomyces carlsbergensis. I. The effect of ribonuclease on protein synthesis. Biochim Biophys Acta 47:138–143

    Article  Google Scholar 

  • Devun F, Walter L, Belliere J et al (2010) Ubiquinone analogs: a mitochondrial permeability transition pore-dependent pathway to selective cell death. PLoS ONE 5:e11792

    Article  Google Scholar 

  • Díaz-Ruiz R, Averet N, Araiza D, Pinson B, Uribe-Carvajal S, Devin A et al (2008) Mitochondrial oxidative phosphorylation is regulated by fructose 1,6-bisphosphate. A possible role in Crabtree effect induction? J Biol Chem 283:26948–26955

    Article  Google Scholar 

  • Di Lisa F, Bernardi P (2006) Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res 70:191–199

    Article  Google Scholar 

  • Di Lisa F, Carpi A, Giorgio V, Bernardi P (2011) The mitochondrial permeability transition pore and cyclophilin D in cardioprotection. Biochim Biophys Acta 1813:1316–1322

    Article  Google Scholar 

  • Fontaine E, Eriksson O, Ichas F, Bernardi P (1998) Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation By electron flow through the respiratory chain complex I. J Biol Chem 273:12662–12668

    Article  CAS  Google Scholar 

  • Giorgio V, Soriano ME, Basso E et al (2010) Cyclophilin D in mitochondrial pathophysiology. Biochim Biophys Acta 1797:1113–1118

    Article  CAS  Google Scholar 

  • Giorgio V, Von Stockum S, Antoniel M et al (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci U S A 110:5887–5892

    Article  CAS  Google Scholar 

  • Gutiérrez-Aguilar M, Douglas DL, Gibson AK et al (2014) Genetic manipulation of the cardiac mitochondrial phosphate carrier does not affect permeability transition. J Mol Cell Cardiol 72:316–325

    Article  Google Scholar 

  • Gutiérrez-Aguilar M, Pérez-Martínez X, Chávez E, Uribe-Carvajal S (2010) In Saccharomyces cerevisiae, the phosphate carrier is a component of the mitochondrial unselective channel. Arch Biochem Biophys 494:184–191

    Article  Google Scholar 

  • Hunter DR, Haworth RA (1979) The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 195:453–459

    Article  CAS  Google Scholar 

  • Ichas F, Mazat JP (1998) From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim Biophys Acta 1366:33–50

    Article  CAS  Google Scholar 

  • James AM, Cochemé HM, Smith RAJ, Murphy MP (2005) Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J Biol Chem 280:21295–21312

    Article  CAS  Google Scholar 

  • Kwong JQ, Davis J, Baines CP et al (2014) Genetic deletion of the mitochondrial phosphate carrier desensitizes the mitochondrial permeability transition pore and causes cardiomyopathy. Cell Death Differ 21(8):1209–1217

    Article  CAS  Google Scholar 

  • Leverve XM, Fontaine E (2001) Role of substrates in the regulation of mitochondrial function in situ. IUBMB Life 52(3–5):221–229

    CAS  Google Scholar 

  • Li B, Chauvin C, De Paulis D et al (2012) Inhibition of complex I regulates the mitochondrial permeability transition through a phosphate-sensitive inhibitory site masked by cyclophilin D. Biochim Biophys Acta 1817:1628–1634

    Article  CAS  Google Scholar 

  • Manon S (1999) Dependence of yeast mitochondrial unselective channel activity on the respiratory chain. Biochim Biophys Acta 1410:85–90

    Article  CAS  Google Scholar 

  • Manon S, Roucou X, Guérin M et al (1998) Characterization of the yeast mitochondria unselective channel: a counterpart to the mammalian permeability transition pore? J Bioenerg Biomembr 30:419–429

    Article  CAS  Google Scholar 

  • Prieto S, Bouillaud F, Rial E (1995) The mechanism for the ATP-induced uncoupling of respiration in mitochondria of the yeast Saccharomyces cerevisiae. Biochem J 307(Pt 3):657–661

    CAS  Google Scholar 

  • Quinlan CL, Peresvoshchikova IV, Hey-Mogensen M, Orr AL, Brand MD (2013) Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol 1:304–312

    Article  CAS  Google Scholar 

  • Uribe S, Rangel P, Pardo JP (1992) Interactions of calcium with yeast mitochondria. Cell Calcium 13:211–217

    Article  CAS  Google Scholar 

  • Uribe-Carvajal S, Luévano-Martínez LA, Guerrero-Castillo S et al (2011) Mitochondrial unselective channels throughout the eukaryotic domain. Mitochondrion 11:382–390

    Article  CAS  Google Scholar 

  • Varela C, Cárdenas J, Melo F, Agosin E (2005) Quantitative analysis of wine yeast gene expression profiles under winemaking conditions. Yeast 22:369–383

    Article  CAS  Google Scholar 

  • Walter L, Miyoshi H, Leverve X et al (2002) Regulation of the mitochondrial permeability transition pore by ubiquinone analogs. a progress report. Free Radic Res 36:405–412

    Article  CAS  Google Scholar 

  • Walter L, Nogueira V, Leverve X et al (2000) Three classes of ubiquinone analogs regulate the mitochondrial permeability transition pore through a common site. J Biol Chem 275:29521–29527

    Article  CAS  Google Scholar 

  • Yamada A, Yamamoto T, Yoshimura Y et al (2009) Ca2+-induced permeability transition can be observed even in yeast mitochondria under optimized experimental conditions. Biochim Biophys Acta 1787:1486–1491

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.G.-A. is currently supported by an American Heart Association Midwest Affiliate Postdoctoral Fellowship (13POST14060013). HLC is a CONACyT fellow enrolled in the Ms. Sc. Biochemistry program at UNAM. CUA, EGS and MRL are CONACyT fellows enrolled in the Ph. D. Biochemistry program at UNAM. Partially funded by DGAPA/PAPIIT Project IN202612. We acknowledge the technical assistance of Ramón Mendez. Mariana Valenzuela kindly helped to build the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Gutiérrez-Aguilar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Aguilar, M., López-Carbajal, H.M., Uribe-Alvarez, C. et al. Effects of ubiquinone derivatives on the mitochondrial unselective channel of Saccharomyces cerevisiae . J Bioenerg Biomembr 46, 519–527 (2014). https://doi.org/10.1007/s10863-014-9595-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-014-9595-3

Keywords

Navigation