Skip to main content

Advertisement

Log in

Glycolytic inhibitors 2-deoxyglucose and 3-bromopyruvate synergize with photodynamic therapy respectively to inhibit cell migration

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

A Correction to this article was published on 05 January 2023

This article has been updated

Abstract

Most cancer cells have the specially increased glycolytic phenotype, which makes this pathway become an attractive therapeutic target. Although glycolytic inhibitor 2-deoxyglucose (2-DG) has been demonstrated to potentiate the cytotoxicity of photodynamic therapy (PDT), the impacts on cell migration after the combined treatment has never been reported yet. The present study aimed to analyze the influence of glycolytic inhibitors 2-DG and 3-bromopyruvate (3-BP) combined with Ce6-PDT on cell motility of Triple Negative Breast Cancer MDA-MB-231 cells. As determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium-bromide-Tetraz-olium (MTT) assay, more decreased cell viability was observed in 2-DG + PDT and 3-BP + PDT groups when compared with either monotherapy. Under optimal conditions, synergistic potentiation on cell membrane destruction and the decline of cell adhesion and cells migratory ability were observed in both 2-DG + PDT and 3-BP + PDT by electron microscope observation (SEM), wound healing and trans-well assays. Besides, serious microfilament network collapses as well as impairment of matrix metalloproteinases-9 (MMP-9) were notably improved after the combined treatments by immunofluorescent staining. These results suggest that 2-DG and 3-BP can both significantly potentiated Ce6-PDT efficacy of cell migration inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  • Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281

    Article  Google Scholar 

  • Buzoglu HD, Unal H, Ulger C, Mert S, Kücükyildirim S, Er N (2009) The zymographic evaluation of gelatinase (MMP-2 and −9) levels in acute and chronic periapical abscesses. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:e121–e126

    Article  Google Scholar 

  • Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–72

    Article  CAS  Google Scholar 

  • Chin WW, Lau WK, Heng PW, Bhuvaneswari R, Olivo M (2006) Fluorescence imaging and phototoxicity effects of new formulation of chlorin e6-polyvinylpyrrolidone. J Photochem Photobiol Biol 84:103–110

    Article  CAS  Google Scholar 

  • Conor C, Lynch Lynn M (2002) Matrisian matrix metalloproteinases in tumor–host cell communication. Differ 70:561–573

    Article  Google Scholar 

  • Cooper JA (1991) The role of actin polymerization in cell motility. Annu Rev Physiol 53:585–605

  • Correia I, Chu D, Chou YH, Goldman RD, Matsudaira P (1999) Integrating the actin and vimentin cytoskeletons: adhesion-dependent formation of fimbrin–vimentin complexes in macrophages. J Cell Biol 146:831–42

    Article  CAS  Google Scholar 

  • Dahle J, Angell-Petersen E, Steen HB, Moan J (2001) Bystander effects in cell death induced by photodynamic treatment UVA radiation and inhibitors of ATP synthesis. Photochem Photobiol l73:378–387

    Article  Google Scholar 

  • Davids LM, Kleemann B (2011) Combating melanoma: the use of photodynamic therapy as a novel, adjuvant therapeutic tool. Cancer Treat Rev 37:465–475

    CAS  Google Scholar 

  • Dominguez R, Holmes KC (2011) Actin structure and function. Annu Rev Biophys 40:169–86

    Article  CAS  Google Scholar 

  • Feng XL, Zhang Y, Wang P, Liu QH, Wang XB (2014) Energy metabolism targeted drugs synergize with photodynamic therapy to potentiate breast cancer cell death. Photochem Photobiol Sci 13(12):1793–803

    Article  CAS  Google Scholar 

  • Firczuk M, Winiarska M, Szokalska A, Jodlowska M, Swiech M, Bojarczuk K et al (2011) Approaches to improve photodynamic therapy of cancer. Front Biosci 16:208–224

    Article  CAS  Google Scholar 

  • Foda HD, Zucker S (2001) Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. Drug Discov Today 478–482

  • Foultier MT, Vonarx-Coinsmann V, Cordel S, Combre A, Patrice T (1994) Modulation of colonic cancer adhesiveness by haematoporphyrin derivative therapy. J Photochem Photobiol B Biol 23:9–17

    Article  CAS  Google Scholar 

  • Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147:992–1009

    Article  CAS  Google Scholar 

  • Gatenby RA, Gawlinski ET (2003) The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models. Cancer Res 63:3847–54

    CAS  Google Scholar 

  • Golding JP, Wardhaugh T, Patrick L, Turner M, Phillips JB, Bruce JI et al (2013) Targeting tumour energy metabolism potentiates the cytotoxicity of 5-aminolevulinic acid photodynamic therapy. British Journal of Cancer 1–7

  • Gomer CJ, Ferrario A, Murphree AL (1987) The effect of localized porphyrin photodynamic therapy on the induction of tumour metastasis. Br J Cancer 56(1):27–32

  • Gupta S, Farooque A, Adhikari JS, Singh S, Dwarakanath BS (2009) Enhancement of radiation and chemotherapeutic drug responses by 2-deoxy-D-glucose in animal tumors. J Cancer Res Ther 5(Suppl 1):S16–20

    CAS  Google Scholar 

  • Hammoudi N, Ahmed KB, Garcia-Prieto C, Huang P (2011) The Warburg effect and its cancer therapeutic implications. Chin J Cancer 30:508–525

    Article  CAS  Google Scholar 

  • Juarranz A, Jaén P, Sanz-Rodríguez F, Cuevas J, González S (2008) Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol 10:148–154

    Article  CAS  Google Scholar 

  • Khaitlina S (2001) Functional specificity of actin isoforms. Int Rev Cytol 202:35–98

    Article  CAS  Google Scholar 

  • Kirveliene V, Sadauskaite A, Kadziauskas J, Sasnauskiene S, Juodka B (2003) Correlation of death modes of photosensitized cells with intracellular ATP concentration. FEBS Lett 553:167–172

    Article  CAS  Google Scholar 

  • Kochubeev GA, Frolov AA, Kostiuk VA, Pronskaia IV, Gurinovich GP (1988) Photodynamic effect of chlorine e6 on erythrocyte membranes. Biofizika 33:471–474

    CAS  Google Scholar 

  • Lardner A (2001) The effects of extracellular pH on immune function. J Leukoc Biol 69:522–30

    CAS  Google Scholar 

  • Li H, Zhang K, Liu LH, Ouyang Y, Bu J, Guo HB et al (2014) A systematic review of matrix metalloproteinase 9 as a biomarker of survival in patients with osteosarcoma. Tumor Biol 35(6):5487–91

    Article  CAS  Google Scholar 

  • Majumder M, Tutunea-Fatan E, Xin X, Rodriguez-Torres M, Torres-Garcia J, Wiebe R et al (2012) Co-expression of α9β1 integrin and VEGF-D confers lymphatic metastatic ability to a human breast cancer cell line MDA-MB-468LN. PLoS One 7(4):e35094

  • Margaron P, Sorrenti R, Levy JG (1997) Photodynamic therapy inhibits cell adhesion without altering integrin expression. Biochim Biophys Acta 1359(3):200–10

    Article  CAS  Google Scholar 

  • Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidmarsh GF et al (2004) 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res 64:31–4

    Article  CAS  Google Scholar 

  • McInroy L, Määttä A (2007) Down-regulation of vimentin expression inhibits carcinoma cell migration and adhesion. Biochem Biophys Res Commun 360:109–14

    Article  CAS  Google Scholar 

  • Mojzisova H, Bonneau S, Vever-Bizet C, Brault D (2007) Cellular uptake and subcellular distribution of chlorin e6 as functions of pH and interactions with membranes and lipoproteins. Biochim Biophys Acta 1768:2748–2756

    Article  CAS  Google Scholar 

  • Murphy G, Nagase H (2008) Progress in matrix metalloproteinase research. Mol Aspects Med 29:290–308

    Article  CAS  Google Scholar 

  • Noodt BB, Rodal GH, Wainwright M, Peng Q, Horobin R, Nesland JM et al (1998) Apoptosis induction by different pathways with methylene blue derivative and light from mitochondrial sites in V79 cells. Int J Cancer 75:941–948

    Article  CAS  Google Scholar 

  • Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–4646

    Article  CAS  Google Scholar 

  • Peter LP (2007) Warburg, me and hexokinase 2: multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “warburg effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39:211–222

    Article  Google Scholar 

  • Radestock A, Elsner P, Gitter B, Hipler UC (2007) Induction of apoptosis in HaCaT cells by photodynamic therapy with chlorin e6 or pheophorbide α. Skin Pharmacol Physiol 20:3–9

    Article  CAS  Google Scholar 

  • Rousset N, Vonarx V, Eléouet S, Carré J, Kerninon E, Lajat Y et al (1999) Effects of photodynamic therapy on adhesion molecules and metastasis. J Photochem Photobiol B 52(1–3):65–73

  • Schoenenberger CA, Mannherz HG, Jockusch BM (2011) Actin: from structural plasticity to functional diversity. Eur J Cell Biol 90:797–804

    Article  CAS  Google Scholar 

  • Shapiro SD (1998) Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr Opin Cell Biol 10(5):602–8

    Article  CAS  Google Scholar 

  • Shevchuk I, Chekulayev V, Moan J, Berg K (1996) Effects of the inhibitors of energy metabolism, lonidamine and levamisole on 5-aminolevulinic-acidinduced photochemotherapy. Int J Cancer 67:791–799

    Article  CAS  Google Scholar 

  • Tallant C, Marrero A, Gomis-Rüth FX (2010) Matrix metalloproteinases: fold and function of their catalytic domains. Biochim Biophys Acta 1803:20–28

    Article  CAS  Google Scholar 

  • Uzdensky AB, Juzeniene A, Kolpakova E, Hjortland GO, Juzenas P, Moan J (2004) Photosensitization with protoporphyrin IX inhibits attachment of cancer cells to a substratum. Biochem Biophys Res Commun 322(2):452–7

    Article  CAS  Google Scholar 

  • Uzdensky A, Kolpakova E, Juzeniene A, Juzenas P, Moan J (2005) The effect of sub-lethal ALA-PDT on the cytoskeleton and adhesion of cultured human cancer cells. Biochim Biophys Acta 1722(1):43–50

    Article  CAS  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  Google Scholar 

  • Vonarx V, Foultier MT, Xavier de Brito L, Anasagasti L, Morlet L, Patrice T (1995) Photodynamic therapy decreases cancer colonic cell adhesiveness and metastatic potential. Res Exp Med (Berl) 195(2):101–116

  • Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21:297–308

    Article  CAS  Google Scholar 

  • Weiss L, Ward PM (1983) Cell detachment and metastasis. Cancer Metastasis Rev 2:111–127

    Article  CAS  Google Scholar 

  • Xiao H, Li S, Zhang D, Liu T, Yu M, Wang F (2012) Separate and concurrent use of 2-deoxy-D-glucose and 3-bromopyruvate in pancreatic cancer cells. Oncol Rep 29(1):329–34

    Google Scholar 

  • Zimcík P, Miletín M (2004) Photodynamic therapy as a new prospective method for cancer treatment. I. History, basic principles. Ceska Slov Farm 53:219–224

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.81472846), and the Fundamental Research Funds for the Central Universities (GK201502009).

Disclosure statement

We have no conflicting financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobing Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Wang, P., Liu, Q. et al. Glycolytic inhibitors 2-deoxyglucose and 3-bromopyruvate synergize with photodynamic therapy respectively to inhibit cell migration. J Bioenerg Biomembr 47, 189–197 (2015). https://doi.org/10.1007/s10863-015-9604-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-015-9604-1

Keywords

Navigation