Skip to main content

Advertisement

Log in

Energy metabolism targeted drugs synergize with photodynamic therapy to potentiate breast cancer cell death

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Malignant cells are highly dependent on aerobic glycolysis, which differs significantly from normal cells (the Warburg effect). Interference of this metabolic process has been considered as an innovative method for developing selective cancer therapy. A recent study demonstrated that the glycolysis inhibitor 2-deoxyglucose (2-DG) can potentiate PDT efficacy, whereas the possible mechanisms have not been carefully investigated. This study firstly proved the general potentiation of PDT efficacy by 2-DG and 3-bromopyruvate (3-BP) in human breast cancer MDA-MB-231 cells, and carefully elucidated the underlying mechanism in the process. Our results showed that both 2-DG and 3-BP could significantly promote a PDT-induced cell cytotoxic effect when compared with either monotherapy. Synergistic potentiation of mitochondria- and caspase-dependent cell apoptosis was observed, including a mitochondrial membrane potential (MMP) drop, Bax translocation, and caspase-3 activation. Besides, ROS generation and the expression of oxidative stress related proteins such as P38 MAPK phosphorylation and JNK phosphorylation were notably increased after the combined treatments. Moreover, when pretreated with the ROS scavenger N-acetylcysteine (NAC), the ROS generation, the MMP drop, cell apoptosis and cytotoxicity were differently inhibited, suggesting that ROS was vertical in the pro-apoptotic process induced by 2-DG/3-BP combined with PDT treatment. These results indicate that the combination of glycolytic antagonists and PDT may be a promising therapeutic strategy to effectively kill cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Hammoudi, K. B. Ahmed, C. Garcia-Prieto and P. Huang, The Warburg effect and its cancer therapeutic implications, Chin. J. Cancer, 2011, 30, 508–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M. G. Vander Heiden, L. C. Cantley and C. B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science, 2009, 324, 1029–1033.

    Article  CAS  Google Scholar 

  3. L. Galluzzi, O. Kepp, M. G. Vander Heiden and G. Kroemer, Metabolic targets for cancer therapy, Nat. Rev. Drug Discovery, 2013, 12, 829–846.

    Article  CAS  PubMed  Google Scholar 

  4. C. Granchi and F. Minutolo, Anticancer Agents That Counteract Tumor Glycolysis, ChemMedChem, 2012, 7, 1318–1350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. T. N. Seyfried, R. E. Flores, A. M. Poff, D. P. D’Agostino, Cancer as a Metabolic Disease: Implications for Novel Therapeutics, Carcinogenesis, 2014, 35 3, 515–527.

    Article  CAS  PubMed  Google Scholar 

  6. L. P. Peter, Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen, J. Bioenerg. Biomembr., 2007, 39, 211–222.

    Article  CAS  Google Scholar 

  7. P. M. Saroj, H. K. Young and L. P. Peter, Hexokinase-2 bound to mitochondria: Cancer’s stygian link to the “Warburg effect” and a pivotal target for effective therapy, Semin. Cancer Biol., 2009, 19, 17–24.

    Article  CAS  Google Scholar 

  8. E. Hulleman, K. M. Kazemier, A. Holleman, D. J. VanderWeele, C. M. Rudin, M. J. Broekhuis, W. E. Evans, R. Pieters, M. L. Den Boer, Inhibition of glycolysis modulates prednisolone resistance in acute lympho-blastic leukemia cells, Blood, 2009, 113, 2014–2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. D. Trachootham, J. Alexandre and P. Huang, Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?, Nat. Rev. Drug Discovery, 2009, 8, 579–591.

    Article  CAS  PubMed  Google Scholar 

  10. B. S. Dwarakanath, D. Singh, A. K. Banerji, R. Sarin, N. K. Venkataramana, R. Jalali, P. N. Vishwanath, B. K. Mohanti, R. P. Tripathi, V. K. Kalia and V. Jain, Clinical studies for improving radiotherapy with 2-deoxy-D-glucose: present status and future prospects, J. Cancer Res. Ther., 2009, 1, S21–S26.

    Article  CAS  Google Scholar 

  11. H. Pelicano and D. S. Martin, R.-H. Xu and P. Huang, Glycolysis inhibition for anticancer treatment, Oncogene, 2006, 25, 4633–4646.

    Article  CAS  PubMed  Google Scholar 

  12. G. Maschek, N. Savaraj, W. Priebe, P. Braunschweiger, K. Hamilton, G. F. Tidmarsh, L. R. De Young and T. J. Lampidis, 2-Deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo, Cancer Res., 2004, 64, 31–34.

    Article  CAS  PubMed  Google Scholar 

  13. L. S. Ihrlund, E. Hernlund, O. Khan and M. C. Shoshan, 3-Bromopyruvate as inhibitor of tumour cell energy metabolism and chemopotentiator of platinum drugs, Mol. Oncol., 2008, 2, 94–101.

    Article  PubMed  PubMed Central  Google Scholar 

  14. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson and J. Golab, Photodynamic therapy of cancer: An update, Ca-Cancer J. Clin., 2011, 61, 250–281.

    Article  PubMed  PubMed Central  Google Scholar 

  15. S. Anand, B. J. Ortel, S. P. Pereira, T. Hasan and E. V. Maytin, Biomodulatory approaches to photodynamic therapy for solid tumors, Cancer Lett., 2012, 326, 8–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. G. Bown, How mainstream medicine sees photodynamic therapy in the United Kingdom, J. Natl. Compr. Cancer Network, 2012, 10, S69–S74.

    Article  Google Scholar 

  17. L. M. Davids and B. Kleemann, Combating melanoma: The use of photodynamic therapy as a novel, adjuvant therapeutic tool, Cancer Treat. Rev., 2011, 37, 465–475.

    CAS  PubMed  Google Scholar 

  18. E. Crescenzi, A. Chiaviello and G. Canti, Low doses of cisplatin or gemcitabine plus Photofrin/photodynamic therapy: Disjointed cell cycle phase-related activity accounts for synergistic outcome in metastatic non-small cell lung cancer cells (H1299), Mol. Cancer Ther., 2006, 5, 776–785.

    Article  CAS  PubMed  Google Scholar 

  19. J. P. Golding, T. Wardhaugh, L. Patrick, M. Yurner, J. B. Phillips, J. I. Bruce and S. G. Kimani, Targeting tumour energy metabolism potentiates the cytotoxicity of 5-aminolevulinic acid photodynamic therapy, Br. J. Cancer, 2013, 109 4, 976–982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Z. J. Jin’s, About the evaluation of drug combination, Acta Pharmacol. Sin., 2004, 25, 146–147.

    Google Scholar 

  21. X. Wang, Q. Liu, P. Wang, Z. Wang, W. Tong, B. Zhu, Y. Wang and C. Li, Comparisons among sensitivities of different tumor cells to focused ultrasoundin vitro, Ultrasonics, 2009, 49, 558e564.

    Article  CAS  Google Scholar 

  22. Y. Li, P. Wang, P. Zhao, S. Zhu, X. Wang and Q. Liu, Apoptosis induced by sonodynamic treatment by protoporphyrin IX on MDA-MB-231 cells, Ultrasonics, 2012, 52, 490–496.

    Article  CAS  PubMed  Google Scholar 

  23. D. Kessel, J. Reiners Jr., Light-Activated Pharmaceuticals: Mechanisms and Detection, Isr. J. Chem., 2012, 52, 674–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. B. Wang, J. Wang, Q. Liu, H. Huang, M. Chen, K. Li, C. Li, X. Yu and P. Chu, Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies, Biomaterials, 2014, 35, 1954–1966.

    Article  CAS  PubMed  Google Scholar 

  25. N. Rubio, J. Verrax, M. Dewaele, T. Verfaillie, T. Johansen, J. Piette and P. Agostinis, p38(MAPK)-regulated induction of p62 and NBR1 after photodynamic therapy promotes autophagic clearance of ubiquitin aggregates and reduces reactive oxygen species levels by supporting Nrf2-antioxidant signaling, Free Radicals Biol. Med., 2014, 67, 292–303.

    Article  CAS  Google Scholar 

  26. C. Kim, C. Chung, K. Choi, J. Yoo, D. Kim, Y. Jeong and D. Kang, Effect of 5-aminolevulinic acid-based photodynamic therapy via reactive oxygen species in human cholangiocarcinoma cells, Int. J. Nanomedicine, 2011, 6, 1357–1363.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. P. He, J. Ahn, I. Shin and P. Chung, Photoactivation of 9-hydroxypheophorbide alpha triggers apoptosis through the reactive oxygen species-mediated mitochondrial pathway and endoplasmic reticulum stress in AMC-HN-3 laryngeal cancer cells, Int. J. Oncol., 2010, 36, 801–808.

    CAS  PubMed  Google Scholar 

  28. H. Pelicano, D. S. Martin, R. H. Xu and P. Huang, Glycolysis inhibition for anticancer treatment, Oncogene, 2006, 25, 4633–4646.

    Article  CAS  PubMed  Google Scholar 

  29. M. Cuperlovic-Culf, A. Culf, M. Touaibia and N. Lefort, Targeting the latest hallmark of cancer: another attempt at ‘magic bullet’ drugs targeting cancers’ metabolic phenotype, Future Oncol., 2012, l8, 1315–1330.

    Article  CAS  Google Scholar 

  30. S. Rello, J. C. Stockert, V. Moreno, A. Gámez, M. Pacheco, A. Juarranz, M. Cañete and A. Villanueva, Morphological criteria to distinguish cell death induced by apoptotic and necrotic treatments, Apoptosis, 2005, 10, 201–208.

    Article  CAS  PubMed  Google Scholar 

  31. H. P. Wang, X. B. Wang, P. Wang, K. Zhang, S. Yang and Q. H. Liu, Ultrasound enhances the efficacy of Chlorin e6-mediated photodynamic therapy in MDA-MB-231 cells, Ultrasound Med. Biol., 2013, 19, 1713–1724.

    Article  Google Scholar 

  32. K. K. Arora and P. L. Pedersen, Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP, J. Biol. Chem., 1988, 263, 17422–17428.

    Article  CAS  PubMed  Google Scholar 

  33. A. M. Petros, A. Medek, D. G. Nettesheim, D. H. Kim, H. S. Yoon, K. Swift, E. D. Matayoshi, T. Oltersdorf and S. W. Fesik, Solution structure of the antiapoptotic protein BCL-2, Proc. Natl. Acad. Sci. U. S. A., 2001, 98 6, 3012–3017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. T. Kuwana, M. R. Mackey, G. Perkins, M. H. Ellisman, M. Latterich, R. Schneiter, D. R. Green and D. D. Newmeyer, BAX and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane, Cell, 2002, 111 3, 331–342.

    Article  CAS  PubMed  Google Scholar 

  35. A. G. Porter and R. U. Janicke, Emerging roles of caspase-3 in apoptosis, Cell Death Differ., 1999, 6 2, 99–104.

    Article  CAS  PubMed  Google Scholar 

  36. R. Hilf, R. S. Murant, U. Narayanan and S. L. Gibson, Relationship of Mitochondrial Function and Cellular Adenosine Triphosphate Levels to Hematoporphyrin Derivative-induced Photosensitization in R3230AC Mammary Tumors, Cancer Res., 1986, 46, 211–217.

    CAS  PubMed  Google Scholar 

  37. K. Tobias, P. Kristjan, B. O. Christian, B. Juergen, J. O. Franz and K. Barbara, Differential effects of glucose deprivation on the cellular sensitivity towards photodynamic treatment-based production of reactive oxygen species and apoptosis-induction, FEBS Lett., 2005, 579, 185–190.

    Article  CAS  Google Scholar 

  38. A. Matsuzawa and H. Ichijo, Stress-responsive protein kinases in redox-regulated apoptosis signaling, Antioxid. Redox Signaling, 2005, 7, 472–481.

    Article  CAS  Google Scholar 

  39. V. Temkin and M. Karin, From death receptor to reactive oxygen species and c-Jun N-terminal protein kinase: The receptor-interacting protein 1 odyssey, Immunol. Rev., 2007, 220, 8–21.

    Article  CAS  PubMed  Google Scholar 

  40. Y. M. Ha, M. K. Park, H. J. Kim, H. G. Seo, J. H. Lee and K. C. Chang, High concentrations of ascorbic acid induces apoptosis of human gastric cancer cell by p38-MAP kinase-dependent up-regulation of transferrin receptor, Cancer Lett., 2009, 277, 48–54.

    Article  CAS  PubMed  Google Scholar 

  41. A. Vibhuti, K. Muralidhar and B. S. Dwarakanath, Differential cytotoxicity of the glycolytic inhibitor 2-deoxy-D-glucose in isogenic cell lines varying in their p53 status, J. Cancer Res. Ther., 2013, 9 4, 686–692.

    Article  CAS  PubMed  Google Scholar 

  42. V. Jain, Modifications of radiation responses by 2-deoxy-D-glucose in normal and cancer cells, Indian J. Nucl. Med., 1996, 11, 8–17.

    Google Scholar 

  43. H. Xi, J. C. Barredo, J. R. Merchan and T. J. Lampidis, Endoplasmic reticulum stress induced by 2-deoxyglucose but not glucose starvation activates AMPK through CaMKKβ leading to autophagy, Biochem. Pharmacol., 2013, 85 10, 1463–1477.

    Article  CAS  PubMed  Google Scholar 

  44. Q. Wang, B. Liang, N. A. Shirwany and M. H. Zou, 2-Deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase, PLoS One, 2011, 6 2, e17234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. C. Rodrigues-Ferreira, A. P. da Silva and A. Galina, Effect of the antitumoral alkylating agent 3-bromopyruvate on mitochondrial respiration: role of mitochondrially bound hexokinase, J. Bioenerg. Biomembr., 2012, 44 1, 39–49.

    Article  CAS  PubMed  Google Scholar 

  46. S. Ganapathy-Kanniappan, M. Vali, R. Kunjithapatham, M. Buijs, L. H. Syed, P. P. Rao, S. Ota, B. K. Kwak, R. Loffroy and J. F. Geschwind, 3-bromopyruvate: a new targeted antiglycolytic agent and a promise for cancer therapy, Curr. Pharm. Biotechnol., 2010, 11 5, 510–517.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Zhang, Y., Wang, P. et al. Energy metabolism targeted drugs synergize with photodynamic therapy to potentiate breast cancer cell death. Photochem Photobiol Sci 13, 1793–1803 (2014). https://doi.org/10.1039/c4pp00288a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00288a

Navigation