Skip to main content
Log in

CONNJUR Workflow Builder: a software integration environment for spectral reconstruction

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

CONNJUR Workflow Builder (WB) is an open-source software integration environment that leverages existing spectral reconstruction tools to create a synergistic, coherent platform for converting biomolecular NMR data from the time domain to the frequency domain. WB provides data integration of primary data and metadata using a relational database, and includes a library of pre-built workflows for processing time domain data. WB simplifies maximum entropy reconstruction, facilitating the processing of non-uniformly sampled time domain data. As will be shown in the paper, the unique features of WB provide it with novel abilities to enhance the quality, accuracy, and fidelity of the spectral reconstruction process. WB also provides features which promote collaboration, education, parameterization, and non-uniform data sets along with processing integrated with the Rowland NMR Toolkit (RNMRTK) and NMRPipe software packages. WB is available free of charge in perpetuity, dual-licensed under the MIT and GPL open source licenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ACD/NMR Processor Academic Edition Web. http://www.acdlabs.com/resources/freeware/nmr_proc/ 17 Sept 2014

  • Altintas I, Berkley C, Jaeger E, Jones M, Ludascher B, Mock S (2004) Kepler: an extensible system for design and execution of scientific workflows. In: 16th International Conference on Scientific and Statistical Database Management, 2004 IEEE pp 423–424

  • Azara home page Web. http://www2.ccpn.ac.uk/azara/ 17 Sept 2014

  • Bernstein FC, Koetzle TF, Williams GJ, Meyer EF, Brice MD, Rodgers JR, Tasumi M (1977) The protein data bank. Eur J Biochem 80(2):319–324

    Article  Google Scholar 

  • Bowers S, Ludäscher B (2005) Actor-oriented design of scientific workflows. In: Delcambre LML, Kop C, Mayr HC, Mylopoulos J, Pastor O (eds) Conceptual modeling–ER 2005. LNCS, vol. 3716. Springer, Heidelberg, pp 369–384

  • Clore GM, Gronenborn AM (1994) Multidimensional heteronuclear nuclear magnetic resonance of proteins. Methods Enzymol 239:349–363

    Article  Google Scholar 

  • Cormen TH, Leiserson CE, Rivest RL Stein C (2001) Introduction to algorithms, Vol 2. MIT press, Cambridge, pp 531–549

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Google Scholar 

  • Delta NMR Data Processing Software Web. http://www.jeolusa.com/tabid/380/Default.aspx 17 Sept 2014

  • Ernst RR, Anderson WA (1966) Application of Fourier transform spectroscopy to magnetic resonance. Rev Sci Instrum 37(1):93–102

    Article  ADS  Google Scholar 

  • Ernst RR, Bodenhausen G, Wokaun A (1991) Principles of nuclear magnetic resonance in one and two dimensions (No. LRMB-BOOK-1991–001)

  • Gryk MR, Vyas J, Maciejewski MW (2010) Biomolecular NMR data analysis. Prog Nucl Magn Reson Spectrosc 56(4):329

    Article  Google Scholar 

  • Güntert P, Dötsch V, Wider G, Wüthrich K (1992) Processing of multi-dimensional NMR data with the new software PROSA. J Biomol NMR 2:619–629

    Article  Google Scholar 

  • Hoch JC, Stern A (1985) The Rowland NMR toolkit. Rowland Institute for Science Technical Memorandum, 18t

  • Hoch JC, Stern AS (1996) NMR data processing. Wiley, New York

    Google Scholar 

  • Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Wang J (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531

    Article  Google Scholar 

  • iNMR Web. http://www.inmr.net/ 17 Sept 2014

  • Jeener J (1971) Oral presentation in Ampere International Summer School II, Basko Polje, Yugoslavia (1971). (b) Aue WP, Bartholdi E, Ernst J Chem Phys 64:2229

  • Kazimierczuk K, Kozminski W, Zhukov I (2006a) Two-dimensional Fourier transform of arbitrarily sampled NMR data sets. J Magn Reson 179:323–328

    Article  ADS  Google Scholar 

  • Kazimierczuk K, Misiak M, Stanek J, Zawadzka-Kazimierczuk A, Kozminski W (2012) Generalized Fourier transform for non-uniform sampled data. Top Curr Chem 316:79–124

    Article  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Kozminski W, Zhukov I (2006b) Random sampling of evolution time space and Fourier transform processing. J Biomol NMR 36:157–168

    Article  Google Scholar 

  • Maciejewski MW, Qui HZ, Rujan I, Mobli M, Hoch JC (2009) Nonuniform sampling and spectral aliasing. J Magn Reson 199:88–93

    Article  ADS  Google Scholar 

  • Mobli M, Maciejewski MW, Gryk MR, Hoch JC (2007a) An automated tool for maximum entropy reconstruction of biomolecular NMR spectra. Nat Methods 4:3–4

    Article  Google Scholar 

  • Mobli M, Maciejewski MW, Gryk MR, Hoch JC (2007b) Automatic maximum entropy spectral reconstruction in NMR. J Biomol NMR 39:133–139

    Article  Google Scholar 

  • Mnova NMR Lite Web. http://mestrelab.com/software/mnova/nmr-lite/ 17 Sept 2014

  • Nowling RJ, Vyas J, Weatherby G, Fenwick MW, Ellis HJ, Gryk MR (2011) CONNJUR spectrum translator: an open source application for reformatting NMR spectral data. J Biomol NMR 50(1):83–89

    Article  Google Scholar 

  • Nyquist H (1928) Certain topics in telegraph transmission theory. Am Inst Electr Eng Trans 47(2):617–644

    Article  Google Scholar 

  • Oschkinat H, Griesinger C, Kraulis PJ, Sørensen OW, Ernst RR, Gronenborn AM, Clore GM (1988) Three-dimensional NMR spectroscopy of a protein in solution. Nature 332(6162):374–376

    Article  ADS  Google Scholar 

  • PERCH Solutions Web. http://new.perchsolutions.com/index.php?id=36 17 Sept 2014

  • Schmieder P, Stern AS, Wagner G, Hoch JC (1993) Application of nonlinear sampling schemes to COSY-type spectra. J Biomol NMR 3:569–576

    Google Scholar 

  • Shimba N, Stern AS, Craik CS, Hoch JC, Dötsch V (2003) Elimination of 13Cα splitting in protein NMR spectra by deconvolution with maximum entropy reconstruction. J Am Chem Soc 125:2382–2383

    Article  Google Scholar 

  • SpinWorks Web. http://www.columbia.edu/cu/chemistry/groups/nmr/SpinWorks.html 17 Sept 2014

  • Stern AS, Li K-, Hoch JC (2002) Modern spectrum analysis in multidimensional NMR spectroscopy: comparison of linear-prediction extrapolation and maximum-entropy reconstruction. J Am Chem Soc 124:1982–1993

    Article  Google Scholar 

  • Stoven V, Annereau JP, Delsuc MA, Lallemand JY (1997) A new N-channel maximum entropy method in NMR for automatic reconstruction of decoupled spectra and J-coupling determination. J Chem Inf Comput Sci 37:265–272

    Article  Google Scholar 

  • SwaN-MR Web. http://www.inmr.net/swan/ 17 Sept 2014

  • TopSpin Web. http://www.bruker.com/products/mr/nmr/nmr-software/software/topspin/overview.html 17 Sept 2014

  • Verdi KK, Ellis HJ, Gryk MR (2007) Conceptual-level workflow modeling of scientific experiments using NMR as a case study. BMC Bioinformatics 8:31

    Article  Google Scholar 

  • VnmrJ Web. http://www.chem.agilent.com/en-US/products-services/Software-Informatics/VnmrJ/Pages/default.aspx 17 Sept 2014

  • Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins: Struct Funct Bioinform 59(4):687–696

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by United States National Institutes of Health grant GM-083072. The authors wish to thank Drs. Frank Delaglio, Jeffrey Hoch, Mark W. Maciejewski and Alan Stern for useful conversations and assistance with the operation of NMRPipe and the Rowland NMR Toolkit. The authors would also like to thank Dr. Eldon Ulrich for assistance with the NMR-STAR format and data dictionary.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Gryk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fenwick, M., Weatherby, G., Vyas, J. et al. CONNJUR Workflow Builder: a software integration environment for spectral reconstruction. J Biomol NMR 62, 313–326 (2015). https://doi.org/10.1007/s10858-015-9946-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-015-9946-3

Keywords

Navigation