Skip to main content
Log in

A comprehensive study of NiFe2O4 and NiFe2O4/rGO (reduced graphene oxide) nanocomposite: synthesis, structural, optical, dielectric, magnetic and magneto-dielectric analysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A sol–gel method was employed to synthesize a pure and reduced graphene oxide (rGO)—decorated NiFe2O4 (NFO) nanocomposite. Analysis of the X-ray diffraction (XRD) data revealed that both of these samples exhibit a cubic structure with an Fd-3m space group. According to Debye–Scherer’s equation, the average sizes for NFO and NFO/rGO nanocomposites are ~ 21 and 17 nm, respectively. The Raman spectra of the NFO/rGO nanocomposite showed two prominent bands (D and G), confirming the presence of rGO with an ID/IG ratio of 0.8. The FTIR spectra determined the various functional groups present in these samples. Using UV–visible spectroscopy, the optical band gap (Eg) for NFO and NFO/rGO nanocomposite was determined to be 2.04 and 2.26 eV, respectively. The dielectric permittivity (ε) and tangent loss (tan δ) of NFO and NFO/rGO were investigated as functions of frequency (100 kHz to 1 MHz) at diverse temperatures ranging from 300 to 773 K, and they were explained by Maxwell–Wagner-type polarization. Frequency-dependent conductivity (σ) followed Jonscher's power law. Impedance spectroscopy further evaluated electrical characteristics, such as relaxation time (τ). At room temperature, NFO and NFO/rGO exhibited strong negative magneto-dielectric coupling (MD) in low-frequency regions. The magneto-dielectric (MD) percentages for the NFO and NFO/rGO nanocomposites are − 21.21 and − 62.47%, respectively, at 1 kHz under a 1 Tesla external magnetic field. NFO exhibited a higher magnetization (MS) value of 50.28 emu/g compared to NFO/rGO (18.78 emu/g), due to the shielding effect of rGO at room temperature (RT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Data findings can be provided on request.

References

  1. N. Askari, N. Salarizadeh, M.B. Askari, J. Mater. Sci. Mater. Electron. 32, 9765–9775 (2021). https://doi.org/10.1007/s10854-021-05636-9

    Article  CAS  PubMed  Google Scholar 

  2. R.S. Yadav, I. Kuvritka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, V. Enev, M. Hajdú-chová, J. Phys. Chem. Sol. 107, 150–161 (2017). https://doi.org/10.1016/j.jpcs.2017.04.004

    Article  CAS  Google Scholar 

  3. M.H. Habibi, F. Fakhri, J. Mater. Sci. Mater. Electron. 28, 13455–13463 (2017). https://doi.org/10.1007/s10854-017-7184-z

    Article  CAS  Google Scholar 

  4. K.C. Babu Naidu, W. Madhuri, Bull. Mater. Sci. 40, 417–425 (2017). https://doi.org/10.1007/s12034-017-1374-4

    Article  CAS  Google Scholar 

  5. X. Zhao, Y.L. Zhang, X.X. Wang, H.L. Shi, W.Z. Wang, M.S. Cao, J. Mater. Sci. Mater. Electron. 27, 11518–11523 (2016). https://doi.org/10.1007/s10854-016-5280-0

    Article  CAS  Google Scholar 

  6. S.A. Ebrahimi, J. Azadmanjiri, J. Non Cryst. Solids 353, 802–804 (2007). https://doi.org/10.1016/j.jnoncrysol.2006.12.044

    Article  CAS  Google Scholar 

  7. A. Alarifi, N.M. Deraz, S. Shaban, J. Alloys Compds. 486, 501–506 (2009). https://doi.org/10.1016/j.jallcom.2009.06.192

    Article  CAS  Google Scholar 

  8. B. Palanivel, M. Alagiri, ChemistrySelect 5, 9765–9775 (2020). https://doi.org/10.1002/slct.202002519

    Article  CAS  Google Scholar 

  9. M. Parishan, M. Nadafan, Z. Dehghani, R. Malekfar, G.H.H. Khorrami, Results Phys. 7, 3619–3623 (2017). https://doi.org/10.1016/j.rinp.2017.09.049

    Article  Google Scholar 

  10. B.K. Chatterjee, C.K. Ghosh, K.K. Chattopadhyay, J. Appl. Phys. 116, 153904 (2014). https://doi.org/10.1063/1.4898089

    Article  CAS  Google Scholar 

  11. N. Kumar, A. Kumar, G.M. Huang, W.W. Wu, T.Y. Tseng, Appl. Surf. Sci. 433, 1100–1112 (2018). https://doi.org/10.1016/j.apsusc.2017.10.095

    Article  CAS  Google Scholar 

  12. C.T. Cherian, J. Sundaramurthy, M.V. Reddy, P.S. Kumar, K. Mani, D. Pliszka, C.H. Sow, S. Ramakrishna, B.V.R. Chowdari, ACS Appl. Mater. Interfaces 5, 9957–9963 (2013). https://doi.org/10.1021/am401779p

    Article  CAS  PubMed  Google Scholar 

  13. U. Kurtan, H. Güngünes, H. Sözeri, A. Baykal, Ceram. Int. 42, 7987–7992 (2016). https://doi.org/10.1016/j.ceramint.2016.01.200

    Article  CAS  Google Scholar 

  14. T. Prabhakaran, J. Hemalatha, Ceram. Int. 40, 3315–3324 (2014). https://doi.org/10.1016/j.ceramint.2013.09.103

    Article  CAS  Google Scholar 

  15. M. Mylarappa, V. VenkataLakshmi, S. Kantharaju, Int J Waste Resour. 10, 385 (2020). https://doi.org/10.35248/2252-5211.20.10.385

    Article  Google Scholar 

  16. R. Tamilselvi, G.S. Lekshmi, N. Padmanathan, V. Selvaraj, O. Bazaka, I. Levchenko, K. Bazaka, M. Mandhakini, Renew. Energy 181, 1386–1401 (2022). https://doi.org/10.1016/j.renene.2021.07.088

    Article  CAS  Google Scholar 

  17. P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Mater. Lett. 65, 1438–1440 (2011). https://doi.org/10.1016/j.jallcom.2013.02.077

    Article  CAS  Google Scholar 

  18. P. Zhu, S. Liu, J. Xie, S. Zhang, G. Cao, X. Zhao, J. Mater. Sci. Technol. 30, 1078–1083 (2014). https://doi.org/10.1016/j.jmst.2014.08.009

    Article  CAS  Google Scholar 

  19. T.F. Marinca, I. Chicinas, O. Isnard, V. Pop, F. Popa, J. Alloys Compd. 509, 7931–7936 (2011). https://doi.org/10.1016/j.jallcom.2011.05.040

    Article  CAS  Google Scholar 

  20. Md.K. Shamim, S. Sharma, R.J. Choudhary, J. Alloys Compd. 794, 534–541 (2019). https://doi.org/10.1016/j.jallcom.2019.04.201

    Article  CAS  Google Scholar 

  21. A. Kale, S. Gubbala, R.D.K. Misra, J. Magn. Magn. Mater. 277, 350–358 (2004). https://doi.org/10.1016/j.jmmm.2003.11.015

    Article  CAS  Google Scholar 

  22. V. Kuldeep, O. Subohi, R. Kurchania, Appl. Phys. A 125, 631 (2019). https://doi.org/10.1007/s00339-019-2921-1

    Article  CAS  Google Scholar 

  23. F. Majid, J. Rauf, S. Ata, I. Bibi, A. Malik, S.M. Ibrahim, A. Ali, M. Iqbal, Mater. Chem. Phys. 258, 123888 (2021). https://doi.org/10.1016/j.matchemphys.2020.123888

    Article  CAS  Google Scholar 

  24. R. Tiwari, M. De, H.S. Tewari, S.K. Ghoshal, Results Phys. 16, 102916 (2020). https://doi.org/10.1016/j.rinp.2019.102916

    Article  Google Scholar 

  25. F. Wu, X. Wang, M. Li, H. Xu, Ceram. Int. 42, 16666–16670 (2016). https://doi.org/10.1016/j.ceramint.2016.07.099

    Article  CAS  Google Scholar 

  26. A.E.F. Oliveira, G.B. Braga, C.R.T. Tarley, A.C. Pereira, J. Mater. Sci. 53, 12005–12015 (2018). https://doi.org/10.1007/s10853-018-2473-3

    Article  CAS  Google Scholar 

  27. A. Razaq, F. Bibi, X. Zheng, R. Papadakis, S.H.M. Jafri, H. Li, Materials. 15(3), 1012 (2022). https://doi.org/10.3390/ma15031012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. S. Abdolhosseinzadeh, H. Asgharzadeh, H.S. Kim, Sci. Rep. 5, 10160 (2015). https://doi.org/10.1038/srep10160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, Nano Mater. Sci. 1(1), 31–47 (2019). https://doi.org/10.1016/j.nanoms.2019.02.004

    Article  Google Scholar 

  30. T. Imboon, J. Khumphon, K. Yotkuna, I.M. Tang, S. Thongmee, S.N. Appl, Sci. 3, 653 (2021). https://doi.org/10.1007/s42452-021-04644-y

    Article  CAS  Google Scholar 

  31. D. Roy Chowdhury, C. Singh, A. Paul, RSC Adv. 4, 15138–15145 (2014). https://doi.org/10.1039/c4ra01019a

    Article  CAS  Google Scholar 

  32. M. Chen, C. Zhang, X. Li, L. Zhang, Y. Ma, L. Zhang, X. Xu, F. Xia, W. Wang, J. Gao, J. Mater. Chem. A. 1, 2869–2877 (2013). https://doi.org/10.1039/c2ta00820c

    Article  CAS  Google Scholar 

  33. L. Kong, X. Jiang, Y. Zeng, T. Zhou, G. Shi, Sens. Actuators B 185, 424–431 (2013). https://doi.org/10.1016/j.snb.2013.05.033

    Article  CAS  Google Scholar 

  34. M.S. Amir Faiz, C.A. CheAzurahanim, S.A. Raba’ah, M.Z. Ruzniza, Results Phys. 16, 102954 (2020). https://doi.org/10.1016/j.rinp.2020.102954

    Article  Google Scholar 

  35. M. Sarathbavan, H.K. Dara, K.R. Kumar, A.M. Strydom, T. Parida, K. Ramamurthi, K.K. Bharathi, J. Nanosci. Nanotechnol. 19(9), 5692–5699 (2019). https://doi.org/10.1166/jnn.2019.16528

    Article  CAS  PubMed  Google Scholar 

  36. S. Jena, D.K. Mishra, A. Soam, N. Jakhar, P. Mallick, Appl. Phys. A 127, 519 (2021). https://doi.org/10.1007/s00339-021-04655-x

    Article  CAS  Google Scholar 

  37. X. Wang, H. Ji, F. Wang, X. Cui, Y. Liu, X. Du, X. Lu, Microchim. Acta 188, 161 (2021). https://doi.org/10.1007/s00604-021-04809-x

    Article  CAS  Google Scholar 

  38. M.H. Habibi, F. Fakhri, J. Mater. Sci. Mater. Electron. 28, 14091–14096 (2017). https://doi.org/10.1007/s10854-017-7261-3

    Article  CAS  Google Scholar 

  39. K.K.H. De Silva, H.H. Huang, R.K. Joshi, M. Yoshimura, Carbon 119, 190–199 (2017). https://doi.org/10.1016/j.carbon.2017.04.025

    Article  CAS  Google Scholar 

  40. J. Jagiełło, A. Chlanda, M. Baran, M. Gwiazda, L. Lipińska, Nanomaterials 10(9), 1846 (2020). https://doi.org/10.3390/nano10091846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. R. Biswal, P. Yadav, B. Khan, P. Kumar, M.K. Singh, Ferroelectrics 616, 53–69 (2023). https://doi.org/10.1080/00150193.2023.2269160

    Article  CAS  Google Scholar 

  42. S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya, V.N. Singh, J. Mol. Struct. 1076, 55–62 (2014). https://doi.org/10.1016/j.molstruc.2014.07.048

    Article  CAS  Google Scholar 

  43. Y.B. Kannan, J. Nanosci. Nanotechnol.Nanosci. Nanotechnol. 5, 655–657 (2019). https://doi.org/10.30799/jnst.223.19050202

    Article  Google Scholar 

  44. B. Sahu, U.K. Panigrahi, S. Chakravarty, S. Hussain, P. Mallick, Appl. Phys. A 129, 584 (2023). https://doi.org/10.1007/s00339-023-06847-z

    Article  CAS  Google Scholar 

  45. A. Ahlawat, V.G. Sathe, V.R. Reddy, A. Gupta, J. Magn. Magn. Mater. 323, 2049–2054 (2011). https://doi.org/10.1002/jrs.2791

    Article  CAS  Google Scholar 

  46. M.A. Ahmed, S.F. Mansour, S.I. El-Dek, Solid State Ion. 181, 1149–1155 (2010). https://doi.org/10.1016/j.ssi.2010.06.031

    Article  CAS  Google Scholar 

  47. R. Biswal, B. Khan, M.K. Singh, J. Mater. Res. 37, 3459–3469 (2022). https://doi.org/10.1557/s43578-022-00717-9

    Article  CAS  Google Scholar 

  48. H.Y. Zhu, R. Jiang, S.H. Huang, J. Yao, F.Q. Fu, J.B. Li, Ceram. Int. 41, 11625–11631 (2015). https://doi.org/10.1016/j.ceramint.2015.05.122

    Article  CAS  Google Scholar 

  49. S.S. Selima, M. Khairy, W.A. Bayoumy, M.A. Mousa, Environ. Sci. Pollut. Res.Pollut. Res. 26, 21484 (2019). https://doi.org/10.21203/rs.3.rs-271636/v1

    Article  CAS  Google Scholar 

  50. B. Cui, H. Lin, Y. Liu, J. Li, P. Sun, X. Zhao, C. Liu, J. Phys. Chem. C 113, 14083–14087 (2009). https://doi.org/10.1021/jp900028t

    Article  CAS  Google Scholar 

  51. S. Divya, P. Sivaprakash, S. Raja, S.E. Muthu, E.M. Eed, S. Arumugam, T.H. Oh, Appl. Nanosci. 13, 1327–1336 (2023). https://doi.org/10.1007/s13204-021-02026-9

    Article  CAS  Google Scholar 

  52. L. Chauhan, A.K. Shukla, K. Sreenivas, Ceram. Int. 41, 8341–8351 (2015). https://doi.org/10.1016/j.ceramint.2015.03.014

    Article  CAS  Google Scholar 

  53. N. Ponpandian, P. Balaya, A. Narayanasamy, J. Condens, Matter Phys. 14, 3221 (2002). https://doi.org/10.1088/0953-8984/14/12/311

    Article  CAS  Google Scholar 

  54. S.A. Soomro, I.H. Gul, M.Z. Khan, H. Naseer, A.N. Khan, Ceram. Int. 43, 4090–4095 (2017). https://doi.org/10.1016/j.ceramint.2016.12.002

    Article  CAS  Google Scholar 

  55. R. Biswal, P. Yadav, P. Kumar, M.K. Singh, J. Inorg. Organomet. Polym. (2024). https://doi.org/10.1007/s10904-023-02976-3

    Article  Google Scholar 

  56. B.C.J. Mary, J.J. Vijaya, B. Saravanakumar, M. Bououdina, L.J. Kennedy, Synth. Met. 291, 117201 (2022). https://doi.org/10.1016/j.synthmet.2022.117201

    Article  CAS  Google Scholar 

  57. M. Hodlevska, V. Kotsyubynsky, V. Boychuk, I. Budzulyak, B. Rachiy, R. Zapukhlyak, M. Hodlevsky, L. Turovska, Appl. Nanosci.Nanosci. 13, 5199–5209 (2023). https://doi.org/10.1007/s13204-022-02741-x

    Article  CAS  Google Scholar 

  58. B. Khan, A. Kumar, P. Yadav, G. Singh, U. Kumar, A. Kumar, M.K. Singh, J. Mater. Sci. Mater. Electron. 32, 18012–18027 (2021). https://doi.org/10.1007/s10854-021-06344-0

    Article  CAS  Google Scholar 

  59. K. Sudalaimuthu, N. Lakshminarasimhan, Ceram. Int. 39, 2309–2315 (2013). https://doi.org/10.1016/j.ceramint.2012.08.078

    Article  CAS  Google Scholar 

  60. B. Senthilkumar, R.K. Selvan, P. Vintothbabu, I. Perelshtein, A. Gedanken, Mater. Chem. Phys. 130, 285–292 (2011). https://doi.org/10.1016/j.matchemphys.2011.06.043

    Article  CAS  Google Scholar 

  61. S. Ravina, S.Z. Kumar, G. Hashmi, J. Srivastava, A.M. Singh, S. Quraishi, F. Dalela, P.A.A. Ahmed, J. Mater. Sci. Mater. Electron. 34, 10 (2023). https://doi.org/10.1007/s10854-023-10312-1

    Article  CAS  Google Scholar 

  62. A. Manohar, V. Vijayakanth, R. Hong, J. Mater. Sci. Mater. Electron. 31(1), 799–806 (2019). https://doi.org/10.1007/s10854-019-02588-z

    Article  CAS  Google Scholar 

  63. S. Chkoundali, S. Ammar, N. Jouini, F. Fiévet, P. Molinié, M. Danot, F. Villain, J.M. Grenèche, J. Phys. 16, 4357 (2004). https://doi.org/10.1088/0953-8984/16/24/017

    Article  CAS  Google Scholar 

  64. N.A.S. Nogueira, V.H.S. Utuni, Y.C. Silva, P.K. Kiyohara, I.F. Vasconcelos, M.A.R. Miranda, J.M. Sasaki, Mater. Chem. Phys. 163, 402–406 (2015). https://doi.org/10.1016/j.matchemphys.2015.07.057

    Article  CAS  Google Scholar 

  65. Z.K. Karakaş, R. Boncukcuoğlu, İH. Karakaş, M. Ertuğrul, J. Magn. Magn. Mater.Magn. Magn. Mater. 374, 298–306 (2015). https://doi.org/10.1016/j.jmmm.2014.08.045

    Article  CAS  Google Scholar 

  66. S. Hoghoghifard, M. Moradi, Ceram. Int. 48, 17768–17775 (2022). https://doi.org/10.1016/j.ceramint.2022.03.047

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Rutam Biswal gratifies DST for DST INSPIRE Fellowship. We wish to acknowledge DST, New Delhi, for financial aid under FIST Programme (Grant No. SR/FST/PSI-216/2016) to Centre of Materials Sciences.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Rutam Biswal: Synthesis, Writing original draft, Conceptualization, Data curation and Formal analysis. Preeti Yadav: Formal analysis. Pragya Mishra: Formal analysis. Pushpendra Kumar: Characterization and Formal analysis. Manoj K. Singh: Conceptualization, editing, Formal analysis and supervision.

Corresponding author

Correspondence to Manoj K. Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interests relevant to article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 296 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswal, R., Yadav, P., Mishra, P. et al. A comprehensive study of NiFe2O4 and NiFe2O4/rGO (reduced graphene oxide) nanocomposite: synthesis, structural, optical, dielectric, magnetic and magneto-dielectric analysis. J Mater Sci: Mater Electron 35, 868 (2024). https://doi.org/10.1007/s10854-024-12612-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12612-6

Navigation