Skip to main content
Log in

Core-loss behavior of Fe-based nanocrystalline at high frequency and high temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We measured the loss of Fe73.5Si15.5B7Cu1Nb3 nanocrystalline magnetic cores prepared by winding an amorphous alloy ribbon into a ring and annealing at 550 °C for 1 h. The dynamic loss of the magnetic core was tested in an oil bath environment from 30 to 200 °C, with a frequency range from 10 to 100kHz and at Bm = 300mT. The coercivity, magnetic induction and permeability of the core deteriorate as the ambient temperature rises. At 100 kHz, the loss decreases from 75.87 W/kg to 72.34 W/kg when temperature increases from 30 to 130 °C and then increases to 73.65 W/kg when temperature increases to 200 °. The loss of the magnetic core shows a trend of first decreasing and then increasing with ambient temperature, and the trend becomes stronger at higher frequencies. Based on Bertotti’s loss separation theory, the reduction of excess loss is the main reason for the reduction of core loss at high temperature, and the excess loss and hysteresis loss are in a competitive relationship. The reason for the decrease in excess loss is thought to be the rise in coercivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Y. Zhang, W. Hao, C. Hu et al., Rare-earth-free Mn30Fe20–xCuxAl50 magnetocaloric materials with stable cubic CsCl-type structure for room-temperature refrigeration. Adv. Func. Mater. 33, 2310047 (2023)

    Article  CAS  Google Scholar 

  2. Y. Zhang, P. Xu, J. Zhu et al., The emergence of considerable room temperature magnetocaloric performances in the transition metal high-entropy alloys. Mater. Today Phys. 32, 101031 (2023)

    Article  CAS  Google Scholar 

  3. J. Su, G. Wang, Y. Yang et al., Effects of tuning Fe/B contents on crystallization behaviors and magnetic properties in novel Si-Free FeBCCuNb Alloys. J. Supercond. Novel Magn. 36(2), 559–566 (2023)

    Article  CAS  Google Scholar 

  4. J. Xu, Y. Yang, Q. Yan et al., Softening and magnetic properties of ultrahigh Fe content FeSiBCuPC nanocrystalline alloy induced by low-pressure stress annealing. Scripta Mater. 179, 6–11 (2020)

    Article  CAS  Google Scholar 

  5. H.R. Lashgari, D. Chu, S. Xie et al., Composition dependence of the microstructure and soft magnetic properties of Fe-based amorphous/nanocrystalline alloys: a review study. J. Non-Cryst. Solids 391, 61–82 (2014)

    Article  CAS  Google Scholar 

  6. P. Gazda, M. Nowicki, R. Szewczyk, Comparison of stress-impedance effect in amorphous ribbons with positive and negative magnetostriction. Mater. 12(2), 275 (2019)

    Article  CAS  Google Scholar 

  7. S.R. Yousefi, H.A. Alshamsi, O. Amiri et al., Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liq. 337, 116405 (2021)

    Article  CAS  Google Scholar 

  8. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Control sonochemical parameter to prepare pure Zn0.35Fe2.65O4 nanostructures and study their photocatalytic activity. Ultrasonics Sonochem. 58, 104619 (2019)

    Article  CAS  Google Scholar 

  9. Y. Zhang, S.X. Liang, Z. Huang et al., Engineering active sites by boron modification in MnSiB metallic glasses for efficient catalytic performance. Appl. Surf. Sci. 644, 158673 (2024)

    Article  CAS  Google Scholar 

  10. J. Xu, Y. Yang, Q. Yan et al., Effects of the substitution of Si by P on crystallization behavior, soft magnetic properties and bending ductility of FeSiBCuPC alloys. J. Alloy. Compd. 816, 152534 (2020)

    Article  CAS  Google Scholar 

  11. D. Azuma, N. Ito, M. Ohta, Recent progress in Fe-based amorphous and nanocrystalline soft magnetic materials. J. Magn. Magn. Mater. 501, 166373 (2020)

    Article  CAS  Google Scholar 

  12. J. Chan, T. Zhan, X. Peng et al., Improved permeability and core loss of amorphous FeSiB/Ni-Zn ferrite soft magnetic composites prepared in an external magnetic field. J. Alloy. Compd. 886, 161335 (2021)

    Article  Google Scholar 

  13. H. Ou, Y. Yang, T. Luo et al., The effect of magnetic field heat treatment on magnetic properties of Fe57Co5Ni20Si4B14 amorphous alloys. J. Supercond. Novel Magn. 35(6), 1499–1505 (2022)

    Article  CAS  Google Scholar 

  14. P.C. Sarker, Y. Guo, H.Y. Lu et al., Measurement and modeling of rotational core loss of Fe-based amorphous magnetic material under 2-d magnetic excitation. IEEE Trans. Magn. 57(11), 1–8 (2021)

    Article  Google Scholar 

  15. T. Kubota, A. Makino, A. Inoue, Low core loss of Fe85Si2B8P4Cu1 nanocrystalline alloys with high Bs and B800. J. Alloy. Compd. 509, S416–S419 (2011)

    Article  CAS  Google Scholar 

  16. S. Xue, J. Feng, S. Guo et al., A new iron loss model for temperature dependencies of hysteresis and eddy current losses in electrical machines. IEEE Trans. Magn. 54(1), 1–10 (2017)

    Article  Google Scholar 

  17. D.A. Bukreev, M.S. Derevyanko, A.A. Moiseev et al., Magnetoimpedance and stress-impedance effects in amorphous CoFeSiB ribbons at elevated temperatures. Materials 13(14), 3216 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A. Yao, R. Moriyama, T. Hatakeyama, Iron loss and magnetic hysteresis properties of nanocrystalline ring core at high and room temperatures under inverter excitation. J. Magn. Soc. Jpn. 44(3), 52–55 (2020)

    Article  CAS  Google Scholar 

  19. W. Shen, F. Wang, D. Boroyevich et al., Loss characterization and calculation of nanocrystalline cores for high-frequency magnetics applications. IEEE Trans. Power Electron. 23(1), 475–484 (2008)

    Article  Google Scholar 

  20. K. Yamazaki, Y. Sakamoto, Electromagnetic field analysis considering reaction field caused by eddy currents and hysteresis phenomenon in laminated cores. IEEE Trans. Magn. 54(3), 1–4 (2017)

    Google Scholar 

  21. E. Agheb, M.A. Bahmani, H.K. Høidalen et al., Core loss behavior in high frequency high power transformers—II: Arbitrary excitation. J Renew. Sustain. Energy. 4(3), 033113 (2012)

    Article  Google Scholar 

  22. H. Sun, C. Wang, J. Wang et al., Fe-based amorphous powder cores with low core loss and high permeability fabricated using the core-shell structured magnetic flaky powders. J. Magn. Magn. Mater. 502, 166548 (2020)

    Article  CAS  Google Scholar 

  23. A. Masood, H.A. Baghbaderani, K.L. Alvarez et al., High-frequency power loss mechanisms in ultra-thin amorphous ribbons. J. Magn. Magn. Mater. 519, 167469 (2021)

    Article  CAS  Google Scholar 

  24. P. Murugaiyan, A. Mitra, R.K. Roy et al., Nanocrystallization and core-loss properties of Fe-rich FeSiBPNbCu nanocrystalline alloy. J. Magn. Magn. Mater. 552, 169228 (2022)

    Article  CAS  Google Scholar 

  25. M.A. Willard, T. Francavilla, V.G. Harris, Core-loss analysis of an (Fe Co, Ni)-based nanocrystalline soft magnetic alloy. J. Appl. Phys. 97(10), 10F502 (2005)

    Article  Google Scholar 

  26. W. Li, H. Cai, Y. Kang et al., High permeability and low loss bioinspired soft magnetic composites with nacre-like structure for high frequency applications. Acta Mater. 167, 267–274 (2019)

    Article  CAS  Google Scholar 

  27. K. Lu, X. Liu, J. Wang et al., Simultaneous improvements of effective magnetic permeability, core losses and temperature characteristics of Fe-Si soft magnetic composites induced by annealing treatment. J. Alloy. Compd. 892, 162100 (2022)

    Article  CAS  Google Scholar 

  28. P. Kollár, Z. Birčáková, J. Füzer et al., Power loss separation in Fe-based composite materials. J. Magn. Magn. Mater. 327, 146–150 (2013)

    Article  Google Scholar 

  29. S. Shihab, A. Benabou, Linking the differential permeability and loss coefficients in Bertotti’s approach. J. Magn. Magn. Mater. 503, 166540 (2020)

    Article  CAS  Google Scholar 

  30. Y. Yoshizawa, S. Oguma, K. Yamauchi, New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64(10), 6044–6046 (1988)

    Article  CAS  Google Scholar 

  31. G. Herzer, Modern soft magnets: amorphous and nanocrystalline materials. Acta Mater. 61(3), 718–734 (2013)

    Article  CAS  Google Scholar 

  32. G. Bertotti, General properties of power losses in soft ferromagnetic materials. IEEE Trans. Magn. 24(1), 621–630 (1987)

    Article  Google Scholar 

  33. G. Bertotti, Physical interpretation of eddy current losses in ferromagnetic materials. I. Theoretical considerations. J. Appl. Phys. 57(6), 2110–2117 (1985)

    Article  CAS  Google Scholar 

  34. A. Boglietti, P. Ferraris, M. Lazzari et al., Influence of the inverter characteristics on the iron losses in PWM inverter-fed induction motors. IEEE Trans. Ind. Appl. 32(5), 1190–1194 (1996)

    Article  Google Scholar 

  35. K.F. Li, D.R. Yao, Li, et al., The effect of ribbon curvature on the magnetic properties of Fe-based amorphous cores. J. Mater. Sci. Mater. Electron. 28, 16736–16740 (2017)

    Article  CAS  Google Scholar 

  36. E. Shuvaeva, S. Kaloshkin, M. Churyukanova et al., The impact of bending stress on magnetic properties of finemet type microwires and ribbons. J. Alloy. Compd. 743, 388–393 (2018)

    Article  CAS  Google Scholar 

  37. D. Li, S. Li, Z. Lu, The effects of post-processing on longitudinal magnetostriction and core losses of high saturation flux density FeSiBC amorphous alloy ribbons and cores. J. Magn. Magn. Mater. 538, 168272 (2021)

    Article  CAS  Google Scholar 

  38. Y.Z. Wang, G.W. Qiao, X.D. Liu et al., Electrical resistivity of nanocrystalline FeCuSiB alloys obtained by crystallization of the amorphous alloy. Mater. Lett. 17(3–4), 152–154 (1993)

    Article  CAS  Google Scholar 

  39. J. Shen, B. Wang, L. Cai et al., Magnetic properties and thermal stability of Fe-based amorphous/carbonyl iron soft magnetic composites. J. Mater. Sci. Mater. Electron. 34(14), 1169 (2023)

    Article  CAS  Google Scholar 

  40. S. Flohrer, R. Schäfer, J. McCord et al., Magnetization loss and domain refinement in nanocrystalline tape wound cores. Acta Mater. 54(12), 3253–3259 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 52071089); Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2019B030302010)

Funding

The work was supported by the National Natural Science Foundation of China (Grant No. 52071089); Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2019B030302010).

Author information

Authors and Affiliations

Authors

Contributions

All authors made contributions to the planning and design of the study. Miaowen Deng: preparation of core samples, formal analysis (magnetic part), and wrote the paper. Yuanzheng Yang: initiation of the work, funding acquisition, and article editing and revising. Peixin Fu and Shunxing Liang: characterizations of core properties. Xiaoling Fu, Weitong Cai and Pingjun Tao: resources, formal analysis (structural parts).

Corresponding author

Correspondence to Yuanzheng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, M., Yang, Y., Fu, P. et al. Core-loss behavior of Fe-based nanocrystalline at high frequency and high temperature. J Mater Sci: Mater Electron 35, 856 (2024). https://doi.org/10.1007/s10854-024-12600-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12600-w

Navigation