Skip to main content
Log in

Effect of Ni Substitution for Si Element on Thermal and Soft Magnetic Properties of Fe73.5NixSi15.5-xB7Nb3Cu1 Nanocrystalline Alloys

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Fe73.5NixSi15.5-xB7Nb3Cu1 nanocrystalline alloys were synthesized for improving the high-frequency performance without decreasing the saturation magnetic induction (Bs). Thermal and microstructural analysis reveals that Ni substitution favors the precipitation of initial α-Fe(Ni)(Si) phase. After proper annealing, the alloy ribbons with minor Ni addition obviously possess better comprehensive soft magnetic properties, including low coercivity of 0.34–0.51 A/m and high effective permeability of 23,000–56,000 in a wide annealing temperature range from 510 °C to 590 °C. The Bs is obviously improved from 1.21 T to 1.43 T, due to the increasing content of ferromagnetic Ni and density. Thermal expansion measurement demonstrates that all investigated alloys have obvious Invar effect and low thermal expansibility, which presents a moderate decrease with increasing Ni addition after crystallization, implying a smaller saturation magnetostriction. The Ni-doping nanocrystalline magnetic cores also exhibit better high-frequency characterization, including high relative permeability and low core loss at high-frequency region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64, 6044 (1988).

    Article  CAS  Google Scholar 

  2. K. Suzuki, A. Makino, A. Inoue, and T. Masumoto, J. Appl. Phys. 70, 6232 (1991).

    Article  CAS  Google Scholar 

  3. M.A. Willard, D.E. Laughlin, and M.E. McHenry, J. Appl. Phys. 84, 6773 (1998).

    Article  CAS  Google Scholar 

  4. A. Makino, H. Men, T. Kubota, K. Yubuta, and A. Inoue, Mater. Trans. JIM 50, 204 (2009).

    Article  CAS  Google Scholar 

  5. D. Azuma, N. Ito, and M. Ohta, J. Magn. Magn. Mater. 501, 166373 (2020).

    Article  CAS  Google Scholar 

  6. M.E. McHenry, M.A. Willard, and D.E. Laughlin, Prog. Mater. Sci. 44, 291 (1999).

    Article  CAS  Google Scholar 

  7. J. Petzold, Scr. Mater. 48, 895 (2003).

    Article  CAS  Google Scholar 

  8. F.P. Wan, A.N. He, J.H. Zhang, J.C. Song, A.D. Wang, C.T. Chang, and X.M. Wang, J. Electron. Mater. 45, 4913 (2016).

    Article  CAS  Google Scholar 

  9. A.D. Wang, M.X. Zhang, J.H. Zhang, H. Men, B.L. Shen, S.J. Pang, and T. Zhang, Chin. Sci. Bull. 56, 3932 (2011).

    Article  CAS  Google Scholar 

  10. J. Zhou, Q.Q. Wang, X.D. Hui, Q.S. Zeng, Y.W. Xiong, K.B. Yin, B.A. Sun, L.T. Sun, M. Stoica, W.H. Wang, and B.L. Shen, Mater. Design 191, 108597 (2020).

    Article  CAS  Google Scholar 

  11. X.D. Fan, Y.T. Tang, Z.X. Shi, M.F. Jiang, and B.L. Shen, AIP Adv. 7, 056107 (2017).

    Article  Google Scholar 

  12. X.B. Zhai, Y.G. Wang, L. Zhu, H. Zheng, Y.D. Dai, J.K. Chen, and F.M. Pan, J. Magn. Magn. Mater. 480, 47 (2019).

    Article  CAS  Google Scholar 

  13. X.J. Jia, Y.H. Li, L.C. Wu, and W. Zhang, J. Alloys Compd. 822, 152784 (2020).

    Article  CAS  Google Scholar 

  14. K. Yamauchi, and T. Mizoguchi, J. Phys. Soc. Jpn. 39, 541 (1975).

    Article  CAS  Google Scholar 

  15. K. Hono, D.H. Ping, M. Ohnuma, and H. Onodera, Acta Mater. 47, 997 (1999).

    Article  CAS  Google Scholar 

  16. Z.Q. Zhang, P. Sharma, and A. Makino, J. Appl. Phys. 112, 103902 (2012).

    Article  Google Scholar 

  17. X.D. Fan, M.F. Jiang, T. Zhang, L. Hou, C.X. Wang, and B.L. Shen, J. Non-Cryst. Solids 533, 119941 (2020).

    Article  CAS  Google Scholar 

  18. R. Parsons, J.S. Garitaonandia, T. Yanai, K. Onodera, H. Kishimoto, A. Kato, and K. Suzuki, J. Alloys Compd. 695, 3156 (2017).

    Article  CAS  Google Scholar 

  19. X.D. Fan, T. Zhang, M.F. Jiang, W.M. Yang, and B.L. Shen, J. Non-Crystal. Solids 503–504, 36 (2019).

    Article  Google Scholar 

  20. Y. Han, and Z. Wang, J. Non-Cryst. Solids 434, 92 (2016).

    Article  CAS  Google Scholar 

  21. X.D. Fan, F.L. Zhu, Q.Q. Wang, M.F. Jiang, and B.L. Shen, Appl. Microsc. 47, 29 (2017).

    Article  Google Scholar 

  22. G. Herzer, IEEE Trans. Magn. 26, 1397 (1990).

    Article  CAS  Google Scholar 

  23. G. Hezer, Acta Mater. 61, 718 (2013).

    Article  Google Scholar 

  24. K.G. Pradeep, G. Herzer, P. Choi, and D. Raabe, Acta Mater. 68, 295 (2014).

    Article  CAS  Google Scholar 

  25. M. Ohnuma, K. Hono, S. Linderoth, J.S. Pedersen, Y. Yoshizawa, and H. Onodera, Acta Mater. 48, 4783 (2000).

    Article  CAS  Google Scholar 

  26. E. Lopatina, I. Soldatov, V. Budinsky, M. Marsilius, L. Schultz, G. Herzer, and R. Schäfer, Acta Mater. 96, 10 (2015).

    Article  CAS  Google Scholar 

  27. A.E. Clark, and H.S. Belson, Phys. Rev. B 5, 3642 (1972).

    Article  Google Scholar 

  28. S. Ishio, M. Takahashi, Z. Xianyu, and Y. Ishikawa, J. Magn. Magn. Mater. 31–34, 1491 (1983).

    Article  Google Scholar 

  29. Q. Hu, J.M. Wang, Y.H. Yan, S. Guo, S.S. Chen, D.P. Lu, J.Z. Zou, and X.R. Zeng, Intermetallics 93, 318 (2018).

    Article  CAS  Google Scholar 

  30. G. Kumar, M. Ohnuma, T. Furubayashi, T. Ohkubo, and K. Hono, J. Non-Cryst. Solids 354, 882 (2008).

    Article  CAS  Google Scholar 

  31. C.L. Zhao, A.D. Wang, S.Q. Yue, T. Liu, A.N. He, C.T. Chang, X.M. Wang, and C.T. Liu, J. Alloys Compd. 742, 220 (2018).

    Article  CAS  Google Scholar 

  32. H.X. Li, Z.C. Lu, S.L. Wang, Y. Wu, and Z.P. Lu, Prog. Mater. Sci. 103, 235 (2019).

    Article  CAS  Google Scholar 

  33. J.H. Zhang, F.P. Wan, Y.C. Li, J.C. Zheng, A.D. Wang, J.C. Song, M.Q. Tian, A.N. He, and C.T. Chang, J. Magn. Magn. Mater. 438, 126 (2017).

    Article  CAS  Google Scholar 

  34. H.Y. Xiao, Y.Q. Dong, A.N. He, H. Sun, A.D. Wang, H. Li, L. Liu, X.C. Liu, and R.W. Li, J. Magn. Magn. Mater. 478, 192 (2019).

    Article  CAS  Google Scholar 

  35. Y. Yoshizawa, and K. Yamauchi, Mater. Trans. JIM 31, 307 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFB0300502), the National Natural Science Foundation of China (Grant Nos. 51631003 and 51871237), the Natural Science Foundation of Jiangsu Province (Grant No. BK20201282) and the Fundamental Research Funds for the Central Universities (Grant No. 2242020R10004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingdu Fan or Baolong Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Jiang, M., Wang, Y. et al. Effect of Ni Substitution for Si Element on Thermal and Soft Magnetic Properties of Fe73.5NixSi15.5-xB7Nb3Cu1 Nanocrystalline Alloys. Journal of Elec Materi 50, 4577–4585 (2021). https://doi.org/10.1007/s11664-021-09004-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09004-5

Keywords

Navigation