Skip to main content
Log in

CBRAM devices based on a nanotube chalcogenide glass structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CBRAM nano-ionic devices are emerging as a competitive technology solution for transistor free memory, offering low power consumption, fast switching, and non-volatility. However, due to the process by which switching is achieved in these devices, namely stochastic growth of a conductive filament bridging the two electrodes within the amorphous material between the electrodes, they suffer from reliability problems. In this work we present devices built with a nanotube structure of chalcogenide glasses to confine the growing conductive bridge. This structure is found to greatly improve device reliability and switching speed. Furthermore, the technology does not involve additional steps, is cost-effective, and is fully compatible with conventional CMOS technology. We have verified the process of conductive bridge growth with scanning electron microscopy and atom force microscopy and characterized the devices in terms of their current–voltage characteristics, memory window, endurance, and retention, all of which show excellent parameters. Their performance stability is also demonstrated at 130 °C, while multilevel switching is established by application of a variety of compliance currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. G.E. Moore, IEEE Trans. Solid State Circ. News. 11, 33 (2006)

    Article  Google Scholar 

  2. M.T. Bohr, IEEE Trans. Nanotechnol. 1, 56 (2002)

    Article  Google Scholar 

  3. J. Alsmeier, G. Samachisa, US Patent 8,349,681, (2013)

  4. Y.S. Kim, D.J. Lee, C.K. Lee, H.K. Choi, S.S. Kim, J.H. Song et al., 2010 IEEE International in Reliability Physics Symposium (IRPS), 599 (2010)

  5. S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968)

    Article  Google Scholar 

  6. M.J. Kang, T.J. Park, Y.W. Kwon, D.H. Ahn, Y.S. Kang, H. Jeong et al., IEEE Electron. Devices Meeting Tech. Digest 39, 11 (2011)

  7. L. Bo, Data storage at the nanoscale, in Advances and Applications, ed. by G. Fuxi, W. Yang (CRC Press, Taylor and Francis publishing group, 2015), p. 463

    Google Scholar 

  8. K.M. Kim et al., Sci. Rep. 6, 20085 (2016)

    Article  Google Scholar 

  9. M.N. Kozicki, H.J. Barnaby, Semicond. Sci. Technol. 31, 113001 (2016)

    Article  Google Scholar 

  10. M.N. Kozicki, M. Mitkova, I. Valov, in Electrochemical Metallization Memories, ed. D. Ielmini, R. Waser (Wiley-VCH Verlag GmbH & Co. KGaA, 2016), p. 483

  11. I. Valov, M.N. Kozicki, J. Phys. D Appl. Phys. 46, 074005 (2013)

    Article  Google Scholar 

  12. U. Russo, D. Kamalanathan, D. Ielmini, A.L. Lacaita, M.N. Kozicki, IEEE Trans. Electron Devices 56(5), 1040 (2009)

    Article  Google Scholar 

  13. H.Y. Cheng, M. BrightSky, S. Raoux, C.F. Chen, P.Y. Du, J.Y. Wu, Y.Y. Lin, T.H. Hsu, Y. Zhu, S. Kim, H.L. Lung, C. Lam, IEEE International Electron Devices Meeting (Washington, DC, 2013), pp. 30–36

  14. A. Bunde, J.W. Kantelhar, in Diffusion in Condensed Matter (Springer, Berlin, 2005), 895

  15. S. Choi, S.H. Tan, Z. Li, Y. Kim, C. Choi, P.-Y. Chen. H. Yeon, S. Yu, J. Kim, Nat. Mat. 17, 335 (2018)

    Article  Google Scholar 

  16. D.B. Strukov, Nat. Mat. 17, 293 (2018)

    Article  Google Scholar 

  17. S. Choi, S.H. Tan, Z. Li, Y. Kim, C. Choi, P.-Y. Chen, H. Yeon, S. Yu, J. Kim, Suppl. Inf. Nat. Mater. 17, 335, (2018). https://doi.org/10.1038/s41563-017-0001-5https1038/s41563-017-0001-5

    Article  Google Scholar 

  18. M.R. Latif, D. Tenne, M. Mitkova, J. Mater. Sci.: Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-0521-z

  19. C.A. Spence, S.R. Elliott, Phys. Rev. B 39, 5452 (1989)

    Article  Google Scholar 

  20. E. Marquez, A.M. Bernal-Oliva, J.M. Gonzalez-Leal, R. Prieto, Alcón, R. Jiménez-Garay, J. Non-Cryst. Sol. 222, 250 (1997)

    Article  Google Scholar 

  21. C. Li, S. Minne, B. Pittenger, A. Mednick, M. Guide, T. Nguyen, Bruker application note AN132 Rev. A, (2011)

  22. H. Lee, P. Chen, T. Wu, Y. Chen, C. Wang, P. Tzeng et al., in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 1 (2008)

  23. Y.S. Chen, T.Y. Wu, P.J. Tzeng, P.S. Chen, H.Y. Lee, C.H. Lin et al. in VLSI Technology, Systems, and Applications, 2009. International Symposium on VLSI-TSA’09, 37, (2009)

  24. M.N. Kozicki, M. Park, M. Mitkova, IEEE Trans. Nanotechnol. 4, 331 (2005)

    Article  Google Scholar 

  25. C. Cheng, A. Chin, F. Yeh, 2010 Symposium on VLSI Technology (VLSIT), 85 (2010)

  26. J.B. Allen, R.F. Larry, Electrochemical methods: fundamentals and applications. Department of Chemistry and Biochemistry University of Texas at Austin, John Wiley & Sons, Inc, (2001)

  27. C.H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry (Wiley-VCH, Weinheim, 1998)

    Google Scholar 

  28. X. Guo, C. Schindler, S. Menzel, R. Waser, Appl. Phys. Lett. 91, 133513 (2007)

    Article  Google Scholar 

  29. C.-Y. Wu, X.-H. Qian, M.-S. Cheng, Y.-A. Liang, W.-M. Chen, IEEE J. Solid State Circuits 49, 2397 (2014)

  30. P.T. Talole, S.T. Sawale, Int. J. Comput. Appl. 1, 24, (2010)

    Google Scholar 

  31. Data Sheet, K9XXG08UXM (2005)

  32. Data Sheet, 48F3300L0YDQ0 (2003)

  33. Data Sheet, HYB18T1G400 (2006)

  34. M. Kund, G. Beitel, C.-U. Pinnow, T. Rohr, J. Schumann, R. Symanczyk et al., in Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, 754 (2005)

  35. N. Derhacobian, S.C. Hollmer, N. Gilbert, M.N. Kozicki, Proceedings of the IEEE, 98, 283, (2010)

  36. D. Kamalanathan, U. Russo, D. Ielmini, M.N. Kozicki, Electron Device Lett. IEEE 30, 553 (2009)

    Article  Google Scholar 

  37. C. Schindler, M. Meier, R. Waser, M. Kozicki, in Non-Volatile Memory Technology Symposium, 2007. NVMTS’07, 82, (2007)

  38. C. Schindler, S.P. Thermadam, R. Waser, M.N. Kozicki, E. Devices, Transactions on IEEE 54, 2762 (2007)

    Article  Google Scholar 

  39. S. Rahaman, S. Maikap, in Proceedings of IMW, 2010, 70, (2010)

  40. C. Liaw, M. Kund, D. Schmitt-Landsiedel, I. Ruge, in Solid State Device Research Conference, 2007. ESSDERC 2007. 37th European, 226 (2007)

Download references

Acknowledgements

This work was partially supported by funding through Idaho State Board of Education under Grant No. IF14-004. Authors acknowledge the participation in this work of Jason Nielsen, who conducted the AFM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mitkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latif, M.R., Davis, P.H., Knowton, W.B. et al. CBRAM devices based on a nanotube chalcogenide glass structure. J Mater Sci: Mater Electron 30, 2389–2402 (2019). https://doi.org/10.1007/s10854-018-0512-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0512-0

Navigation