Skip to main content
Log in

Pb-additive Se-Te-In nano-chalcogenide thin films: preparation, morphological, optical analysis and material perspective for phase-change memory devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present research paper elaborates on the synthesis of nano-chalcogenide Se79-xTe15In6Pbx (x = 0, 1, 2, 4, 6, 8 and 10) thin films through thermal evaporation technique. Distinctive peaks in the X-ray spectrum reveal a nano-range of investigation composition further validated by HRTEM and AFM. Several magnifications of TEM micrographs illustrate honeycomb, rod and nearly spherical shapes of nano-particles. HRTEM micrograph shows that the produced particles have excellent crystallinity and nanostructure. STEM-EDX mapping reveals the formation of nano-particles with Se, Te and In only while depleted in Pb. Also the Se, Te and In contents that present in nano-chalcogenide are homogeneously distributed throughout the nano-particles. Surface morphology of primed thin films analysed with atomic force microscopy illustrates that all nano-films are dense, have irregular grain distribution, well crystallized in nano-form and are composed of nearly spherical-shaped isolated nano-particles uniformly distributed over the surface. The optical transmission spectra of these films have been recorded in the spectral range of 500 to 3000 nm at room temperature. Through Swanepoel's method, the maxima and minima of the interference fringes obtained from spectra are used to deduce film thickness and optical constants viz refractive index, absorption coefficient and extinction coefficient. Thereafter, refractive index and extinction coefficient are used to obtain other optical parameters: volume energy loss function, surface energy loss function, dielectric constant, dielectric loss function, optical conductivity and optical electronegativity. Optical bandgap (Egop) for indirect transitions is determined by Tauc relation and is found to be least for Pb = 1 at.wt.% among examined thin films. The variation in different optical parameters with Pb substitution is also reported and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data and materials were available. The experiential data will be available on reasonable request from the authors.

References

  1. D. Yin, C. Dun, X. Gao, Y. Liu, X. Zhang, D.L. Carroll, M.T. Swihart, Controllable Colloidal Synthesis of Tin(II) Chalcogenide Nanocrystals and Their Solution-Processed Flexible Thermoelectric Thin Films. Small 14, 1801949 (2018). https://doi.org/10.1002/smll.201801949

    Article  CAS  Google Scholar 

  2. O. Stroyuk, A. Raevskaya, F. Spranger, O. Selyshchev, V. Dzhagan, D. Solonenko, N. Gaponik, D.R.T. Zahn, A. Eychmuller, Mercury-indium-sulfide nanocrystals: A new member of the family of ternary in based chalcogenides. J. Chem. Phys. (2019). https://doi.org/10.1063/1.5119991

    Article  Google Scholar 

  3. A. Shamardin, D. Kurbatov, A. Medvids, Effect of deposition temperature on the growth mechanism of chemically prepared CZTGeS thin films. Surf. Interface. Anal. 51, 733 (2019). https://doi.org/10.1002/sia.6644

    Article  CAS  Google Scholar 

  4. S.C. Riha, B.A. Parkinson, A.L. Prieto, Compositionally tunable Cu2ZnSn(S1-xSex)4 nanocrystals: probing the effect of Se-inclusion in mixed chalcogenide thin films. J. Am. Chem. Soc. 131, 15272 (2011). https://doi.org/10.1021/ja2058692

    Article  CAS  Google Scholar 

  5. M.A. El-Oyoun, The effect of addition of gallium on the thermal stability and crystallization kinetic parameters of GaxSe100-x glass system. Physica B 406, 125 (2011). https://doi.org/10.1016/j.physb.2010.10.039

    Article  CAS  Google Scholar 

  6. M.A. El-Oyoun, Effect of wide range of heating rate on the crystallization kinetic parameters of Se77Te20Sb3 glass. Thermochim. Acta 494, 129 (2009). https://doi.org/10.1016/j.tca.2009.05.006

    Article  CAS  Google Scholar 

  7. M. Kruncks, A. Katerski, T. Dedova, I. Oja Acik, A. Mere, Nanostructured solar cell based on spray pyrolysis deposited ZnO nanorod array. Sol. Energy. Mater. Sol. Cells (2008). https://doi.org/10.1016/j.solmat.2008.03.002

    Article  Google Scholar 

  8. A.L. Briseno, S.C.B. Mannsfeld, X. Lu, Y. Xiong, S.A. Jenekhe, Z. Bao, Y. Xia, Fabrication of field-effect transistors from hexathiapentacene single-crystal nanowires. Nano Lett. 7, 668 (2007). https://doi.org/10.1021/nl0627036

    Article  CAS  Google Scholar 

  9. B.L. Allen, P.D. Kichambare, A. Star, Carbon nanotube field: effect–transistor–based biosensors. Adv. Mater. 19, 1439 (2007). https://doi.org/10.1002/adma.200602043

    Article  CAS  Google Scholar 

  10. M.A.M. Khan, W.K. Khan, M. Alhoshan, M.S. Alsalhi, M.Z. Aldwayyan, Influence of Pb doping on the structural, optical and electrical properties of nanocomposite Se-Te films. J. Alloys. Compnds (2010). https://doi.org/10.1016/j.jallcom.2010.05.016

    Article  Google Scholar 

  11. I. Sharma, A.S. Hassanien, Effect of Ge-addition on physical and optical properties of chalcogenide Pb10Se90-xGex bulk glasses and thin films. J. Non-Crystal. Solids (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120326

    Article  Google Scholar 

  12. A.S. Hassanien, H.R. Alamri, I.M. El Radaf, Impact of film thickness on optical properties and optoelectrical parameters of novel CuGaGeSe4 thin films synthesized by electron beam deposition. Opt. Quant. Electr. 52, 335 (2020). https://doi.org/10.1007/s11082-020-02448-9

    Article  CAS  Google Scholar 

  13. Z.Q. Mamiyev, N.O. Balayeva, Preparation and optical studies of PbS nanoparticles. Opt. Mater. 46, 522 (2015). https://doi.org/10.1016/j.optmat.2015.05.017

    Article  CAS  Google Scholar 

  14. O. Stroyuk, A. Raevskaya, N. Gaponik, Solar light harvesting with multinary metal chalcogenide nanocrystals. Chem. Soc. Rev. 47, 5354 (2018). https://doi.org/10.1039/C8CS00029H

    Article  CAS  Google Scholar 

  15. L.F. Koao, F.B. Dejene, H.C. Swart, Synthesis of PbS Nanostructures by Chemical Bath Deposition Method. Int. J. Electrochem. Sci. 9, 1747 (2014)

    Article  Google Scholar 

  16. M.M. Ibrahim, S.A. Saleh, E.M.M. Ibrahim, A.M. Abdel Hakeem, Electrical and thermoelectric properties of PbSe doped with Sm. J. Alloys. Compd (2008). https://doi.org/10.1016/j.jallcom.2006.11.049

    Article  Google Scholar 

  17. Q. Li, Y. Ding, M. Shao, J. Wu, G. Yu, Y. Qian, Sonochemical synthesis of nanocrystalline lead chalcogenides: PbE (E= S, Se, Te). Mater. Res. Bull. 38, 539 (2003). https://doi.org/10.1016/S0025-5408(02)01052-8

    Article  CAS  Google Scholar 

  18. R.N. Bhattacharya, Electrodeposited CdSe0.5Te0.5: photoelectrochemical solar cells. J. Appl. Electrochem. Soc. 16, 168 (1986). https://doi.org/10.1007/BF01093348

    Article  CAS  Google Scholar 

  19. S.A. Khan, F.A. Al-Agel, A.A. Al-Ghamdi, Optical characterization of nanocrystalline Se85Te10Pb5 and Se80Te10Pb10 chalcogenides. Superlattices Microstruct. 47, 695 (2010). https://doi.org/10.1016/j.spmi.2010.03.007

    Article  CAS  Google Scholar 

  20. Mainika, P. Sharma, S.C. Katyal, N. Thakur, An optical study of amorphous (Se80Te20)100−xGex thin films using their transmission spectra. J. Phys. D 41, 235301 (2008). https://doi.org/10.1088/0022-3727/41/23/235301/meta

    Article  Google Scholar 

  21. A.S. Hassanien, Intensive linear and nonlinear optical studies of thermally evaporated amorphous thin Cu-Ge-Se-Te films. J. Non-Crystal. Solids 586, 121563 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121563

    Article  CAS  Google Scholar 

  22. A. El-Denglawey, K.A. Aly, A. Dahshan, A.S. Hassanien, Optical Characteristics of Thermally Evaporated Thin a-(Cu2ZnGe)50−xSe50+x Films ECS. J. Solid State Sci. Technol. 11, 044006 (2022)

    Article  Google Scholar 

  23. B.A. Demko, R.E. Wasylishen, Solid-state Selenium-77 NMR. Prog. Nucl. Magn. Reson. Spectrosc. 54, 208 (2009). https://doi.org/10.1016/j.pnmrs.2008.10.002

    Article  CAS  Google Scholar 

  24. S. Kumar, K. Singh, The effect of indium additive on crystallization kinetics and thermal stability of Se-Te-Sn chalcogenide glasses. Physica B 406, 1519 (2011). https://doi.org/10.1016/j.physb.2011.01.060

    Article  CAS  Google Scholar 

  25. A. Thakur, B.S. Patial, N. Thakur, On the dielectric study of Se80-xTe20Pbx (x = 0, 1 and 2) glasses. J. Electron. Mater. 46, 1516 (2017). https://doi.org/10.1007/s11664-016-5190-1

    Article  CAS  Google Scholar 

  26. D.I. Garcia-Gutierrez, D.F. Garcia-Gutierrez, L.M. De Leon-Covian, M.T. Trevino-Gonzalez, M.A. Garza-Navarro, I.E. Moreno-Cortez, R.F. Cienfuegos-Pelaes, Aberration corrected STEM study of the surface of lead chalcogenide nanoparticles. J. Phys. Chem. C 118, 22291 (2014). https://doi.org/10.1021/jp5057804

    Article  CAS  Google Scholar 

  27. M. Saghir, A.M. Sanchez, S.A. Hindmarsh, S.J. York, G. Balakrishnan, Nanomaterials of the topological crystalline insulators, Pb1-xSnxTe and Pb1-xSnxSe. Cryst. Growth Des. 15, 5202 (2015). https://doi.org/10.1021/acs.cgd.5b00577

    Article  CAS  Google Scholar 

  28. M.A. Alvi, Z.H. Khan, Synthesis and characterization of nanoparticle thin films of a-(PbSe)100-xCdx`lead chalcogenides. Nanoscale Res. Lett. 8, 148 (2013). https://doi.org/10.1186/1556-276X-8-148

    Article  CAS  Google Scholar 

  29. W.B. Zhao, J.J. Zhu, H.Y. Chen, Photochemical preparation of rectangular PbSe and CdSe nanoparticles. J. Cryst. Growth. 252, 587 (2003). https://doi.org/10.1016/S0022-0248(03)00865-0

    Article  CAS  Google Scholar 

  30. D.I. Garcia-Gutierrez, L.M. De Leon-Covian, D.F. Garcia-Gutierrez, M. Trevino-Gonzalez, M.A. Garza-Navarro, S. Sepulveda-Guzman, On the role of Pb0 atoms on the nucleation and growth of PbSe and PbTe nanoparticles. J. Nanopart. Res. 15, 1620 (2013). https://doi.org/10.1007/s11051-013-1620-7

    Article  CAS  Google Scholar 

  31. Anjali, B.S. Patial, S. Bhardwaj, A.M. Awasthi, N. Thakur, On the crystallization kinetics of multicomponent nano-chalcogenide Se79-xTe15In6Pbx (x = 0, 1, 2, 4, 6, 8 and 10) alloys. Nano Ex. 1, 030021 (2020). https://doi.org/10.1088/2632-959X/abc8c7

    Article  Google Scholar 

  32. A.K. Pattanaik, A. Srinivasan, Electrical and optical properties of amorphous PbxIn25-xSe75 films with a disperties of nanocrystallites. J. Optoelectron. Adv. Mater. 5, 1161 (2003)

    CAS  Google Scholar 

  33. A.K. Singh, Recent advances in amorphous semiconductors- A correlative study on Se-based metallic chalcogenide alloys. Rev. Adv. Sci. Eng. 1, 292 (2012). https://doi.org/10.1166/rase.2012.1018

    Article  Google Scholar 

  34. A. Shrestha, M. Batmunkh, A. Tricoli, S. Zhang Qiao, S. Dai, Near‐infrared active lead chalcogenide quantum dots: preparation, post‐synthesis ligand exchange, and applications in solar cells. Angew. Chem. Int. Ed. 58, 5202 (2019). https://doi.org/10.1002/anie.201804053

    Article  CAS  Google Scholar 

  35. M. Liu, O. Voznyy, R. Sabatini, F.P. García de Arquer, R. Munir, A.H. Balawi, X. Lan, F. Fan, G. Walters, A.R. Kirmani, S. Hoogland, F. Laquai, A. Amassian, E.H. Sargent, Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16, 258 (2016). https://doi.org/10.1038/nmat4800

    Article  CAS  Google Scholar 

  36. Y. Yan, R.W. Crisp, J. Gu, B.D. Chernomordik, G.F. Pach, A.R. Marshall, J.A. Turner, M.C. Beard, Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%. Nat. Energy 2, 17052 (2017). https://doi.org/10.1038/nenergy.2017.52

    Article  CAS  Google Scholar 

  37. J. Mal, Y.V. Nancharaiah, E.D. van Hullebuschb, P.N.L. Lens, Metal chalcogenide quantum dots: biotechnological synthesis and applications. RSC Adv. 6, 41477 (2016). https://doi.org/10.1039/C6RA08447H

    Article  CAS  Google Scholar 

  38. J. Ma, L. Wu, Z. Hou, Y. Song, L. Wang, W. Jiang, Visualizing the endocytosis of phenylephrine in living cells by quantum dot-based tracking. Biomaterials 35, 7042 (2014). https://doi.org/10.1016/j.biomaterials.2014.04.081

    Article  CAS  Google Scholar 

  39. S. Chand, N. Thakur, S.C. Katyal, P.B. Barman, V. Sharma, P. Sharma, Recent developments on the synthesis, structural and optical properties of chalcogenide quantum dots. Sol. Energy Mater. Sol. Cells 168, 183 (2017). https://doi.org/10.1016/j.solmat.2017.04.033

    Article  CAS  Google Scholar 

  40. W. Chi, S.K. Banerjee, Development of perovskite solar cells by incorporating quantum dots. Chem. Eng. J. 426, 131588 (2021). https://doi.org/10.1016/j.cej.2021.131588

    Article  CAS  Google Scholar 

  41. M. Hao, Y. Bai, S. Zeiske, L. Ren, J. Liu, Y. Yuan, N. Zarrabi, N. Cheng, M. Ghasemi, P. Chen, M. Lyu, D. He, J.H. Yun, Y.I. Du, Y. Wang, S. Ding, A. Armin, P. Meredith, G. Liu, H.-M. Cheng, L. Wang, Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 5, 79 (2020). https://doi.org/10.1038/s41560-019-0535-7

    Article  CAS  Google Scholar 

  42. J. Yuan, N. Rujisamphan, W. Ma, J. Yuan, Y. Li, S.T. Lee, Perspective on the perovskite quantum dots for flexible photovoltaics. J. Energy Chem. 62, 505 (2021). https://doi.org/10.1016/j.jechem.2021.04.024

    Article  Google Scholar 

  43. H.C. Lee, J.H. Jeong, D.J. Choi, Characterization of phase-change behavior of a Ge2Sb2Te5 thin film using finely controlled electrical pulses for switching. Semicond. Sci. Technol. 31, 095006 (2016). https://doi.org/10.1088/0268-1242/31/9/095006/meta

    Article  Google Scholar 

  44. M. Wuttig, N. Yamada, Phase-change materials for rewriteable data storage Nat. Mater. 6, 824 (2007)

    Article  CAS  Google Scholar 

  45. C. Meneghini, A. Villeneuve, As2S3 photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides. J. Opt. Soc. Am. B: Opt. Phys. 15, 2946 (1998). https://doi.org/10.1364/JOSAB.15.002946

    Article  CAS  Google Scholar 

  46. K. Paivasaari, V.K. Tikhomirov, J. Turunen, High refractive index chalcogenide glass for photonic crystal applications. Opt. Express 15, 2336 (2007). https://doi.org/10.1364/OE.15.002336

    Article  CAS  Google Scholar 

  47. S.K. Tripathi, B.S. Patial, N. Thakur, Glass transition and crystallization study of chalcogenide Se70Te15In15 glass. J. Therm. Anal. Calorim. 107, 31 (2012). https://doi.org/10.1007/s10973-011-1724-1

    Article  CAS  Google Scholar 

  48. B.S. Patial, N. Thakur, S.K. Tripathi, On the crystallization kinetics of In additive Se–Te chalcogenide glasses. Thermochim. Acta. 513, 1 (2011). https://doi.org/10.1016/j.tca.2010.09.009

    Article  CAS  Google Scholar 

  49. Anjali, B.S. Patial, S. Bhardwaj, A.M. Awasthi, N. Thakur, On the AC-conductivity mechanism in nano-crystalline Se79-xTe15In6Pbx (x = 0, 1, 2, 4, 6, 8 and 10) alloys. Physica B 523, 52 (2017). https://doi.org/10.1016/j.physb.2017.08.001

    Article  CAS  Google Scholar 

  50. Anjali, B.S. Patial, S. Chand, N. Thakur, On the high field conduction and I-V measurements in quaternary Se-Te-In-Pb nano-chalcogenide thin films. J. Mater. Sci.-Mater. El. 31, 2741 (2020). https://doi.org/10.1007/s10854-019-02814-8

    Article  CAS  Google Scholar 

  51. Anjali, B.S. Patial, N. Thakur, On the structural and thermo-physical study of Pb doped Se-Te-In nano-chalcogenide alloys. J. Asian Ceram. Soc. 8, 777 (2020). https://doi.org/10.1080/21870764.2020.1789289

    Article  Google Scholar 

  52. E. Esakkiraj, K. Mohanraj, G. Sivakumar, J. Henry, On the optical properties of lead chalcogenide nanoparticles. Optik 126, 2133 (2015). https://doi.org/10.1016/j.ijleo.2015.05.097

    Article  CAS  Google Scholar 

  53. M. Anbarasi, V.S. Nagarethinam, R. Baskaran, V. Narasimman, Studies on the structural, morphological and optoelectrical properties of spray deposited CdS:Pb thin films. Pac Sci Rev A 18, 72–77 (2016). https://doi.org/10.1016/j.psra.2016.08.004

    Article  Google Scholar 

  54. G.A. Muller, J.B. Cook, H.S. Kim, S.H. Tolbert, B. Dunn, High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 15(3), 1911–1917 (2015). https://doi.org/10.1021/nl504764m

    Article  CAS  Google Scholar 

  55. M.N. Amroun, M. Khadraoui, R. Miloua, Z. Kebbab, K. Sahraoui, Investigation on the structural, optical and electrical properties of mixed SnS2—CdS thin films. Optik 131, 152–164 (2017). https://doi.org/10.1016/j.ijleo.2016.11.005

    Article  CAS  Google Scholar 

  56. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  57. S.W. Chen, T.Y. Huanga, Y.H. Hsua, J.X. Liua, A. Zemanovac, A. Kroupa, Phase diagram of Pb–Se–Te system I: experimental study. Calphad. 74, 102310 (2021). https://doi.org/10.1016/j.calphad.2021.102310

    Article  CAS  Google Scholar 

  58. S. Mehra, A.K. Singh, G.S. Thool, V. Ganesan, Synthesis, Morphological and Optical Properties of Nano-Crystalline Solid CuxS Thin Films. Synth. React. Inorg. Met. Org. Chem. 46, 570 (2016). https://doi.org/10.1080/15533174.2014.988815

    Article  CAS  Google Scholar 

  59. A. Kassim, S. Nagalingam, H.S. Min, N. Karrim, XRD and AFM studies of ZnS thin films produced by electrodeposition method. Arab. J. Chem. 3, 243 (2010). https://doi.org/10.1016/j.arabjc.2010.05.002

    Article  CAS  Google Scholar 

  60. S. Kumar, S. Kumar, P. Sharma, V. Sharma, S.C. Katyal, CdS nanofilms: Effect of film thickness on morphology and optical band gap. J. Appl. Phys. 112, 123512 (2012). https://doi.org/10.1063/1.4769799

    Article  CAS  Google Scholar 

  61. S. Chandramohan, T. Strache, S.N. Sarangi, R. Sathyamoorthy, T. Som, Influence of implantation induced Ni-doping on structural, optical, and morphological properties of nanocrystalline CdS thin film. Mater. Sci. Eng. B 171, 16 (2010). https://doi.org/10.1016/j.mseb.2010.03.047

    Article  CAS  Google Scholar 

  62. S. Kumar, N.S. Negi, S.C. Katyal, P. Sharma, V. Sharma, Structural, morphological and magnetic analysis of Cd–CoS dilute magnetic semiconductor nanofilms. J. Magn. Magn. Mater. 367, 1 (2014). https://doi.org/10.1016/j.jmmm.2014.04.065

    Article  CAS  Google Scholar 

  63. J.C. Manifacier, J. Gasiot, J.P. Fillard, A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. J. Phy. E: Sci. Instrum. 9, 1002 (1976). https://doi.org/10.1088/0022-3735/9/11/032

    Article  CAS  Google Scholar 

  64. R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum. 16, 1214 (1983). https://doi.org/10.1088/0022-3735/16/12/023

    Article  CAS  Google Scholar 

  65. R. Swanepoel, Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films. J. Phy. E: Sci. Instrum. 17, 896 (1984). https://doi.org/10.1088/0022-3735/17/10/023

    Article  CAS  Google Scholar 

  66. S.A. Khan, F.S. Al-Hazmi, S. Al-Heniti, A.S. Faidah, A.A. Al-Ghamdi, Effect of cadmium addition on the optical constants of thermally evaporated amorphous Se–S–Cd thin films. Curr. Appl. Phys. 10, 145 (2010). https://doi.org/10.1016/j.cap.2009.05.010

    Article  Google Scholar 

  67. N. Sharma, B.S. Patial, P. Sharma, N. Thakur, On the optical study of Pb additive Se-Te-Ge nanocrystalline quaternary alloys. J. Optoelectron. Adv. Mater. 20, 435 (2018)

    CAS  Google Scholar 

  68. H.E. Atyia, N.A. Hegab, Determination and analysis of optical constants for Ge15Se60Bi25 thin films. Phys. B: Condens. Matter 454, 189 (2014). https://doi.org/10.1016/j.physb.2014.07.068

    Article  CAS  Google Scholar 

  69. A.S. Hassanien, Studies on dielectric properties, opto-electrical parameters and electronic polarizability of thermally evaporated amorphous Cd50S50-xSex thin films. J. Alloys Compd. 671, 566 (2016). https://doi.org/10.1016/j.jallcom.2016.02.126

    Article  CAS  Google Scholar 

  70. N.A. Hegab, H.M. El-Mallah, Optical Properties of As45Te33Ge10Si12 Thin Films. J. Opt. 37, 29 (2008). https://doi.org/10.1007/BF03354835

    Article  CAS  Google Scholar 

  71. F. Urbach, The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Phys. Rev. B 92, 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  CAS  Google Scholar 

  72. V. Pamukchieva, A. Szekeres, K. Todorova, E. Svab, M. Fabian, Compositional dependence of the optical properties of new quaternary chalcogenide glasses of Ge–Sb–(S,Te) system. Opt. Mater. 32, 45 (2009). https://doi.org/10.1016/j.optmat.2009.06.003

    Article  CAS  Google Scholar 

  73. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37 (1968). https://doi.org/10.1016/0025-5408(68)90023-8

    Article  CAS  Google Scholar 

  74. M.I. Abd-Elrahman, M.M. Hafiz, A.M. Abdelraheem, A.A. Abu-Sehly, Characterization of optical constants and dispersion parameters of highly transparent Ge20Se76Sn4 amorphous thin film. Opt. Mater. 50, 99 (2015). https://doi.org/10.1016/j.optmat.2015.10.005

    Article  CAS  Google Scholar 

  75. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials, 2nd edn. (Clarendon, Oxford, 1979)

    Google Scholar 

  76. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 903 (1970). https://doi.org/10.1080/14786437008221061

    Article  CAS  Google Scholar 

  77. H. Salehi, N. Asareh, Investigation of the Optical Properties of CdBr2. Opt. Photonic J. 1, 1 (2011). https://doi.org/10.4236/opj.2011.11001

    Article  CAS  Google Scholar 

  78. N. Sharma, S. Sharma, A. Sarin, A. Kumar, Effect of Sb addition on linear and non-linear optical properties of amorphous Ge–Se–Sn thin films. Opt. Mater. 51, 56 (2016). https://doi.org/10.1016/j.optmat.2015.11.021

    Article  CAS  Google Scholar 

  79. Q. Shen, K. Katayama, T. Sawda, T. Toyoda, Characterization of electron transfer from CdSe quantum dots to nanostructured TiO2 electrode using a near-field heterodyne transient grating technique. Thin Solids Films 516, 5927 (2008). https://doi.org/10.1016/j.tsf.2007.10.070

    Article  CAS  Google Scholar 

  80. Q. Shen, T. Toyoda, Characterization of nanostructured TiO2 electrodes sensitized with CdSe quantum dots using photoacoustic and photoelectrochemical current methods. Jpn. J. Appl. Phys. 43, 2946 (2004). https://doi.org/10.1143/JJAP.43.2946

    Article  CAS  Google Scholar 

  81. K. Anshu, A. Sharma, Study of Se based quaternary Se-Pb-(Bi,Te) chalcogenide thin films for their linear and nonlinear optical properties. Optik 127, 48 (2016). https://doi.org/10.1016/j.ijleo.2015.09.228

    Article  CAS  Google Scholar 

  82. P. Singh, P. Sharma, V. Sharma, A. Thakur, Linear and non-linear optical properties of Ag-doped Ge2Sb2Te5 thin films estimated by single transmission spectra. Semicond. Sci. Technol. 32, 045015 (2017)

    Article  Google Scholar 

  83. K. Sharma, A.S. Al-Kabbi, G.S.S. Saini, S.K. Tripathi, Determination of dispersive optical constants of nanocrystalline CdSe (nc-CdSe) thin films. Mat. Res. Bull. 47, 1400 (2012). https://doi.org/10.1016/j.materresbull.2012.03.008

    Article  CAS  Google Scholar 

  84. T. Serin, S. Gurakar, O. Hakan, A. Yildiz, N. Serin, Influence of oxygen flow rate in CuO. Appl. Surf. Sci. 352, 155 (2015). https://doi.org/10.1016/j.apsusc.2015.01.095

    Article  CAS  Google Scholar 

  85. D. Pines, D. Bohm, A Collective Description of Electron Interactions: II. Collective Individual Particle Aspects of the Interactions. Phys. Rev. 85, 338 (1952). https://doi.org/10.1103/PhysRev.85.338

    Article  CAS  Google Scholar 

  86. M.M. El-Nahass, H.S. Soliman, A.A. Hendi, S.H. El-Gamdy, Effect of annealing on the structural and optical properties of Tertracyanoquinodimethane thin films. Aust. J. Basic Appl. Sci. 5, 145 (2011)

    CAS  Google Scholar 

  87. S. Sarkar, N.S. Das, K.K. Chattopadhyay, Optical constants, dispersion energy parameters and dielectric properties of ultra-smooth nanocrystalline BiVO4 thin films prepared by rf-magnetron sputtering. Solid State Sci. 33, 58 (2014). https://doi.org/10.1016/j.solidstatesciences.2014.04.008

    Article  CAS  Google Scholar 

  88. J.B.K. Kana, J.M. Ndjaka, G. Vignaud, A. Gibaud, M. Maaza, Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry. Opt. Commun. 284, 807 (2011). https://doi.org/10.1016/j.optcom.2010.10.009

    Article  CAS  Google Scholar 

  89. R.V. Gamernyk, Y.P. Gnatenko, P.M. Bukivskij, P.A. Skubenko, V.Y. Slivka, Optical and photoelectric spectroscopy of photorefractive Sn2P2S6 crystals. Optical. J. Phys. Condens. Matter. 18, 5323 (2006). https://doi.org/10.1088/0953-8984/18/23/006

    Article  CAS  Google Scholar 

  90. E. Turan, M. Kul, A.S. Aybek, M. Zor, Structural and optical properties of SnS semiconductor films produced by chemical bath deposition. J. Phys. D Appl. Phys. 42, 245408 (2009). https://doi.org/10.1088/0022-3727/42/24/245408/meta

    Article  Google Scholar 

  91. J.A. Duffy, Trends in energy gaps of binary compounds: an approach based upon electron transfer parameters from optical spectroscopy. J. Phys. C Solid State Phys. 13, 2979 (1980). https://doi.org/10.1088/0022-3719/13/16/008/meta

    Article  CAS  Google Scholar 

  92. J.A. Duffy, Bonding Energy Levels and Bonds in Inorganic Solids (Essex, England: Longman Scientific and Technical (Wiley, New York, 1990)

    Google Scholar 

  93. R.R. Reddy, K.R. Gopal, K. Narasimhulu, L.S.S. Reddy, K.R. Kumar, C.V.K. Reddy, S.N. Ahmed, Correlation between optical electronegativity and refractive index of ternary chalcopyrites, semiconductors, insulators, oxides and alkali halides. Opt. Mater. 31, 209 (2008). https://doi.org/10.1016/j.optmat.2008.03.010

    Article  CAS  Google Scholar 

  94. P. Hawlova, F. Verger, V. Nazabal, R. Boidin, P. Nemec, Photostability of pulsed laser deposited amorphous thin films from Ge-As-Te system. Sci. Rep. 5, 9310 (2015). https://doi.org/10.1038/srep09310

    Article  CAS  Google Scholar 

  95. J. Sharma, S. Kumar, Role of Sn incorporation in the dielectric properties of Se75Te25 and Se85Te15 glassy alloys. Indian J. Pure Appl. Phys. 49, 483 (2011)

    CAS  Google Scholar 

  96. D. Singh, S. Kumar, R. Thangaraj, T.S. Sathiaraj, Influence of thickness on optical properties of a-(Se80Te20) 96Ag4 thin films. Physica B 408, 119 (2013). https://doi.org/10.1016/j.physb.2012.09.034

    Article  CAS  Google Scholar 

  97. A. Sobhani, M. Salavati-Niasari, Synthesis and characterization of a nickel selenide series via a hydrothermal process. Superlattice. Microst. 65, 79 (2014). https://doi.org/10.1016/j.spmi.2013.10.030

    Article  CAS  Google Scholar 

  98. M. Vatanparast, M. Ranjbar, M. Ramezani, S.M. Hosseinpour-Mashkani, M. Mousavi-Kamazani, Sonochemical approach for synthesis and characterization of PbTe nanostructure. Superlattice. Microst. 65, 365 (2014). https://doi.org/10.1016/j.spmi.2013.10.042

    Article  CAS  Google Scholar 

  99. H. Sharma, S.N. Sharma, S. Singh, N.C. Mehra, G. Singh, S.M. Shivaprasad, Comparison of the properties of composition-tunable CdSe–ZnSe and ZnxCd1− xSe nanocrystallites: Single-and double-pot synthesis approach. Mater. Chem. Phys. 124, 670 (2010). https://doi.org/10.1016/j.matchemphys.2010.07.032

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis, interpretation and drafting of the manuscript were done by Anjali. B.S.P wrote, organized, validated and edited the manuscript. P.S helped in data collection and commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Balbir Singh Patial.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjali, Patial, B.S., Sharma, P. et al. Pb-additive Se-Te-In nano-chalcogenide thin films: preparation, morphological, optical analysis and material perspective for phase-change memory devices. J Mater Sci: Mater Electron 34, 1833 (2023). https://doi.org/10.1007/s10854-023-11164-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11164-5

Navigation