Skip to main content
Log in

Sintering mechanism and greatly enhanced ionic conductivity of Mo-doped Li7La3Zr2O12 ceramics via a novel covered sintering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Due to the increasingly urgent safety and energy density concerns of lithium-ion batteries, more and more attention has been attracted by the Li7La3Zr2O12 (LLZO)-based solid electrolytes with high ion conductivity and chemical stability against Li-metal. However, to prepare the high-quality LLZO ceramic electrolyte with high-ion conductivity and density, there is still a big challenge of the serious “Li-loss” and the abnormal grain growth during the long-time high-temperature sintering process. A novel covered sintering method is put forward to prepare the high-quality Mo-doped LLZO (LLZMO) ceramic electrolyte. The sintering strategy effectively suppresses the Li-loss to obtain the LLZMO dense ceramics with cubic garnet phase and tight grain boundaries. The LLZMO ceramics sintered at lower temperature of 1050 °C for 2 h via the novel covered sintering exhibit high density (ρr = 92.3%) and high-ionic conductivity of 6.08 × 10–4 S cm−1 at 25 °C, which are close to those of LLZO-based ceramics prepared by hot pressing sintering, ultrafast high-temperature sintering (UHS). The novel covered sintering provides an energy-saving, low-cost and high-efficient strategy to prepare the high-quality LLZO-based ceramics electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be available on request due to privacy/ethical restrictions.

References

  1. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011)

    Article  CAS  PubMed  Google Scholar 

  2. J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. L. Ye, X. Li, A dynamic stability design strategy for lithium metal solid state batteries. Nature 593, 218–222 (2021)

    Article  CAS  PubMed  Google Scholar 

  4. N.S. Grundish, J.B. Goodenough, H. Khani, Designing composite polymer electrolytes for all-solid-state lithium batteries. Curr. Opin. Electrochem. 30, 100828 (2021)

    Article  CAS  Google Scholar 

  5. L. Fan, S.Y. Wei, S.Y. Li, Q. Li, Y.Y. Lu, Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 8, 1702657 (2018)

    Article  Google Scholar 

  6. M.A.T. Marple, T.A. Wynn, D. Cheng, R. Shimizu, H.E. Mason, Y.S. Meng, Local structure of glassy lithium phosphorus oxynitride thin films: a combined experimental and ab initio approach. Angew. Chem. Int. Ed. 59, 22185–22193 (2020)

    Article  CAS  Google Scholar 

  7. S.P. Shao, G. Tang, H.J. Li, L. Zhang, J.C. Zheng, Y. Luo, J.P. Yue, Y. Shi, Z. Chen, Low-temperature fabrication of NASICON-type LATP with superior ionic conductivity. Ceram. Int. 48, 36961–36967 (2022)

    Article  Google Scholar 

  8. J.H.L. Silva, Y.G.S. Alves, A. Almeida, J. Agostinho Moreira, R. Vilarinho, J.C.A. Santos, Y. Leyet, L.M. Jesus, R.S. Silva, Study of the ionic conductivity of Li0.5La0.5TiO3 laser-sintered ceramics. J. Eur. Ceram. Soc. 40, 5619–5625 (2020)

    Article  CAS  Google Scholar 

  9. R. Murugan, V. Thangadurai, W. Weppner, Fast lithium-ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007)

    Article  CAS  Google Scholar 

  10. R.S. Chen, Q.H. Li, X.Q. Yu, L.Q. Chen, H. Li, Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120, 6820–6877 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. H. Zheng, G. Li, J. Liu, S. Wu, X. Zhang, Y. Wu, H. Zhu, X. Huang, H. Liu, H. Duan, A rational design of garnet-type Li7La3Zr2O12 with ultrahigh moisture stability. Energy Storage Mater. 49, 278–290 (2022)

    Article  Google Scholar 

  12. L. Yang, Q. Dai, L. Liu, D. Shao, K. Luo, S. Jamil, H. Liu, Z. Luo, B. Chang, X. Wang, Rapid sintering method for highly conductive Li7La3Zr2O12 ceramic electrolyte. Ceram. Int. 46, 10917–10924 (2020)

    Article  CAS  Google Scholar 

  13. H.M. Kasper, Series of rare earth garnets Ln3+3M2Li+3O12(M = Te, W). Inorg. Chem. 8, 1000–1002 (1969)

    Article  CAS  Google Scholar 

  14. V. Thangadurai, H. Kaack, W.J.F. Weppner, Novel fast lithium-ion conduction in garnet-type Li5La3M2O12(M = Nb, Ta). J. Am. Ceram. Soc. 86, 437–440 (2003)

    Article  CAS  Google Scholar 

  15. Y. Jin, P.J. McGinn, Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method. J. Power Sources 196, 8683–8687 (2011)

    Article  CAS  Google Scholar 

  16. J.L. Allen, J. Wolfenstine, E. Rangasamy, J. Sakamoto, Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J. Power Sources 206, 315–319 (2012)

    Article  CAS  Google Scholar 

  17. D. Rettenwander, A. Welzl, L. Cheng, J. Fleig, M. Musso, E. Suard, M.M. Doeff, G.J. Redhammer, G. Amthauer, Synthesis, crystal chemistry, and electrochemical properties of Li72xLa3Zr2xMoxO12 (x = 0.1-0.4): stabilization of the cubic garnet polymorph via substitution of Zr4+ by Mo6+. Inorg. Chem. 54, 10440–10449 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. C. Wang, W. Ping, Q. Bai, H. Cui, R. Hensleigh, R. Wang, A.H. Brozena, Z. Xu, J. Dai, Y. Pei, C. Zheng, G. Pastel, J. Gao, X. Wang, H. Wang, J.C. Zhao, B. Yang, X. Zheng, J. Luo, Y. Mo, B. Dunn, L. Hu, A general method to synthesize and sinter bulk ceramics in seconds. Science 368, 521–526 (2020)

    Article  CAS  PubMed  Google Scholar 

  19. X. Zhou, L. Huang, O. Elkedim, Y. Xie, Y. Luo, Q. Chen, Y. Zhang, Y. Chen, Sr2+ and Mo6+ co-doped Li7La3Zr2O12 with superior ionic conductivity. J. Alloys Compd. 891, 161906 (2021)

    Article  Google Scholar 

  20. X. Liu, Y. Li, T. Yang, Z. Cao, W. He, Y. Gao, J. Liu, G. Li, Z. Li, High lithium ionic conductivity in the garnet-type oxide Li72xLa3Zr2xMoxO12 (x = 0-0.3) ceramics by sol-gel method. J. Am. Ceram. Soc. 100, 1527–1533 (2017)

    Article  CAS  Google Scholar 

  21. Y. Li, T. Yang, W. Wu, Z. Cao, W. He, Y. Gao, J. Liu, G. Li, Effect of Al-Mo codoping on the structure and ionic conductivity of sol-gel derived Li7La3Zr2O12 ceramics. Ionics 24, 3305–3315 (2018)

    Article  CAS  Google Scholar 

  22. S. Ramakumar, C. Deviannapoorani, L. Dhivya, L.S. Shankar, R. Murugan, Lithium garnets: synthesis, structure, Li+ conductivity, Li+ dynamics and applications. Prog. Mater. Sci. 88, 325–411 (2017)

    Article  CAS  Google Scholar 

  23. R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet type Li7La3Zr2O12. Angew. Chem. Int. Ed. Engl. 46, 7778–7781 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. X. Huang, Y. Lu, Z. Song, K. Rui, Q. Wang, T. Xiu, M.E. Badding, Z. Wen, Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte. Energy Storage Mater. 22, 207–217 (2019)

    Article  Google Scholar 

  25. L.C. Zhang, J.F. Yang, Y.X. Gao, X.P. Wang, Q.F. Fang, C.H. Chen, Influence of Li3BO3 additives on the Li+ conductivity and stability of Ca/Ta-substituted Li6.55(La2.95Ca0.05)-(Zr1.5Ta0.5)O12 electrolytes. J. Power Sources 355, 69–73 (2017)

    Article  CAS  Google Scholar 

  26. C. Wang, Z.G. Liu, P.P. Lin, X. Xu, F.G. Lu, J.J. Xu, Y.H. Shi, P. He, T.S. Lin, Impacts of 3Li2O-2GeO2 melt on fabrication and electrical performance of novel LLZTO@Li4GeO4/Li2O composite electrolytes. J. Eur. Ceram. Soc. 42, 2290–2298 (2022)

    Article  Google Scholar 

  27. N.C. Rosero-Navarro, T. Yamashita, A. Miura, M. Higuchi, K. Tadanaga, Effect of sintering additives on relative density and Li-ion conductivity of Nb-doped Li7La3Zr2O12 solid electrolyte. J. Am. Ceram. Soc. 100, 276–285 (2017)

    Article  CAS  Google Scholar 

  28. B. Xu, W. Li, H. Duan, H. Wang, Y. Guo, H. Li, H. Liu, Li3PO4-added garnet-type Li6.5La3Zr1.5Ta0.5O12 for Li-dendrite suppression. J. Power Sources 354, 68–73 (2017)

    Article  CAS  Google Scholar 

  29. Z.Y. Huang, K. Liu, L.H. Chen, Y.R. Lu, Y.T. Li, C.A. Wang, Sintering behavior of garnet-type Li6.4La3Zr1.4Ta0.6O12 in Li2CO3 atmosphere and its electrochemical property. Int. J. Appl. Ceram. Technol. 14, 921–927 (2017)

    Article  CAS  Google Scholar 

  30. Y. Wang, W. Lai, Phase transition in lithium garnet oxide ionic conductors Li7La3Zr2O12: the role of Ta substitution and H2O/CO2 exposure. J. Power Sources 275, 612–620 (2015)

    Article  CAS  Google Scholar 

  31. H. Huo, J. Luo, V. Thangadurai, Li2CO3: a critical issue for developing solid garnet batteries. ACS Energy Lett. 5, 252–262 (2019)

    Article  Google Scholar 

  32. S. Yu, R.D. Schmidt, R. Garcia-Mendez, E. Herbert, N.J. Dudney, J.B. Wolfenstine, J. Sakamoto, D.J. Siegel, Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 28, 197–206 (2016)

    Article  CAS  Google Scholar 

  33. Y. Zhang, F. Chen, R. Tu, Q. Shen, L. Zhang, Field assisted sintering of dense Al substituted cubic phase Li7La3Zr2O12 solid electrolytes. J. Power Sources 268, 960–964 (2014)

    Article  CAS  Google Scholar 

  34. M.M. Ahmad, Enhanced lithium ionic conductivity and study of the relaxation and giant dielectric properties of spark plasma sintered Li5La3Nb2O12 nanomaterials. Ceram. Int. 41, 6398–6408 (2015)

    Article  CAS  Google Scholar 

  35. S.W. Baek, J.M. Lee, T.Y. Kim, M.S. Song, Y. Park, Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries. J. Power. Sources 249, 197–206 (2014)

    Article  CAS  Google Scholar 

  36. W. Zhang, C. Sun, Effects of CuO on the microstructure and electrochemical properties of garnet-type Li6.3La3Zr1.65W0.35O12 solid electrolyte. J. Phys. Chem. Solids 135, 109080–109082 (2019)

    Article  CAS  Google Scholar 

  37. X. Liu, Y. Jiang, X. Cheng, R. Yan, X. Zhu, Reduced synthesis temperature and significantly enhanced ionic conductivity for Li6.1Ga0.3La3Zr2O12 electrolyte prepared with sintering aid CuO. Ionics 28, 507105080 (2022)

    Article  Google Scholar 

  38. C. Li, A. Ishii, L. Roy, D. Hitchcock, Y. Meng, K. Brinkman, Solid-state reactive sintering of dense and highly conductive Ta-doped Li7La3Zr2O12 using CuO as a sintering aid. J. Mater. Sci. 55, 16470–16481 (2020)

    Article  CAS  Google Scholar 

  39. C. Zheng, J. Su, Z. Song, T. Xiu, J. Jin, M.E. Badding, Z. Wen, Sintering promotion and electrochemical performance of garnet-type electrolyte with Li2CuO2 additive. J. Alloys Compd. 933, 167810 (2023)

    Article  CAS  Google Scholar 

  40. X. Zhang, X. Guan, Y. Zhang, W. Zhang, Q. Shen, On the interfacial properties of the garnet-type electrolyte ceramic pellets of cubic Li6.4La3Zr1.4Ta0.6O12: a comprehensive improvement of the sintering additive of Li-ion conducting LiCl. J. Power Sources 556, 232459 (2023)

    Article  CAS  Google Scholar 

  41. Y. Tang, Z. Luo, T. Liu, P. Liu, Z. Li, A. Lu, Effects of B2O3 on microstructure and ionic conductivity of Li6.5La3Zr1.5Nb0.5O12 solid electrolyte. Ceram. Int. 43, 11879–11884 (2017)

    Article  CAS  Google Scholar 

  42. P. Wakudkar, A.V. Deshpande, Effect of Li4SiO4 addition in Li6.22Al0.16La3Zr1.7Ta0.3O12 garnet type solid electrolyte for lithium ion battery application. Ceram. Int. 45, 20113–20120 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 52102126) and Opening Testing Funds for the Valuable Equipment of Fuzhou University (Grant No. 2023T008).

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 52102126), and Opening Testing Funds for the Valuable Equipment of Fuzhou University (Grant No. 2023T008).

Author information

Authors and Affiliations

Authors

Contributions

Zonggui Gong: investigation, writing—original draft. Wang Nanlan: data curation, writing—original draft. Haoxuan Guo: investigation, data curation. Peishu Zhu: data curation, conceptualization. Qijing Wang: investigation. Hang Yu: investigation. Yu Zhang: data curation. Min Gao: funding acquisition, writing—review & editing. Xinghua Zheng, conceptualization, supervision, writing—review & editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Min Gao or Xinghua Zheng.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Z., Wang, N., Guo, H. et al. Sintering mechanism and greatly enhanced ionic conductivity of Mo-doped Li7La3Zr2O12 ceramics via a novel covered sintering. J Mater Sci: Mater Electron 35, 670 (2024). https://doi.org/10.1007/s10854-024-12430-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12430-w

Navigation