Skip to main content
Log in

Solid-state reactive sintering of dense and highly conductive Ta-doped Li7La3Z2O12 using CuO as a sintering aid

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cubic-phase garnet-type Li7La3Z2O12 is a promising candidate for an electrolyte of all-solid-state lithium-ion batteries; however, its poor sinterability due to Li sublimation during firing has impeded large scale development. This study demonstrates a solid-state reactive sintering (SSRS) process with added CuO as a sintering aid to enable enhanced materials processing at lower temperatures. Applying the SSRS process with the addition of 1 wt% CuO decreased the sintering temperature for 0.5 mol%Ta-doped LLZTO pellets having over 90% relative density from 1250 to 1100 °C to reduce Li loss. The 1 wt% CuO addition did not lead to secondary phase formation as detected by XRD, nor to appreciable electronic conduction below 100 °C as measured by four-point probe method. The 1 wt% CuO-mixed LLZTO pellet exhibited high conductivity of approximately 3.0 × 10−4 S·cm−1 (bulk) and 5.45x10−5 S·cm−1 (grain boundary). The mechanism of CuO function as a sintering aid is presumed to be enabling liquid-phase sintering along with enhancing the decomposition of LiOH. The combined SSRS process along with optimized CuO sintering aid addition is a one-step process that is a practical technique to enhance the preparation of LLZO-based electrolyte for all-solid-state lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La 3Zr2O12. Angew Chem Int Ed 46:7778–7781. https://doi.org/10.1002/anie.200701144

    Article  CAS  Google Scholar 

  2. Liu M, Li X, Wang X et al (2018) Facile synthesis and electrochemical properties of high lithium ionic conductivity Li1.7Al0.3Ti1.7Si0.4P2.6O12 ceramic solid electrolyte. J Alloys Comp 756:103–110. https://doi.org/10.1016/j.jallcom.2018.04.333

    Article  CAS  Google Scholar 

  3. Thompson T, Yu S, Williams L et al (2017) Electrochemical window of the Li-Ion Solid Electrolyte Li7La3Zr2O12. ACS Energy Lett 2:462–468. https://doi.org/10.1021/acsenergylett.6b00593

    Article  CAS  Google Scholar 

  4. Han F, Zhu Y, He X et al (2016) Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv Energy Mater 6:1–9. https://doi.org/10.1002/aenm.201501590

    Article  CAS  Google Scholar 

  5. Rettenwander D, Blaha P, Laskowski R et al (2014) DFT study of the role of Al 3 + in the fast ion-conductor Li 7–3 x Al 3 + x La 3 Zr 2 O 12 garnet. Chem Mater 26:2617–2623. https://doi.org/10.1021/cm5000999

    Article  CAS  Google Scholar 

  6. Wagner R, Redhammer GJ, Rettenwander D et al (2016) Crystal structure of garnet-related Li-Ion conductor Li7-3xGaxLa3Zr2O12: fast Li-Ion conduction caused by a different cubic modification? Chem Mater 28:1861–1871. https://doi.org/10.1021/acs.chemmater.6b00038

    Article  CAS  Google Scholar 

  7. Robben L, Merzlyakova E, Heitjans P, Gesing TM (2016) Symmetry reduction due to gallium substitution in the garnet Li6.43(2)Ga0.52(3)La2.67(4)Zr2O12. Acta Cryst Sect E Cryst Commun 72:287–289. https://doi.org/10.1107/S2056989016001924

    Article  CAS  Google Scholar 

  8. Rettenwander D, Langer J, Schmidt W et al (2015) Site Occupation of Ga and Al in Stabilized Cubic Li 7–3(x + y) Ga x Al y La 3 Zr 2 O 12 Garnets As Deduced from 27 Al and 71 Ga MAS NMR at Ultrahigh Magnetic Fields. Chem Mater 27:3135–3142. https://doi.org/10.1021/acs.chemmater.5b00684

    Article  CAS  Google Scholar 

  9. Gu W, Ezbiri M, Prasada Rao R et al (2015) Effects of penta-and trivalent dopants on structure and conductivity of Li7La3Zr2O12. Solid State Ion 274:100–105. https://doi.org/10.1016/j.ssi.2015.03.019

    Article  CAS  Google Scholar 

  10. Thompson T, Wolfenstine J, Allen JL et al (2014) Tetragonal vs. cubic phase stability in Al-free Ta doped Li 7La3Zr2O12 (LLZO). J Mater Chem A 2:13431–13436. https://doi.org/10.1039/c4ta02099e

    Article  CAS  Google Scholar 

  11. Rettenwander D, Redhammer G, Preishuber-Pflügl F et al (2016) Structural and electrochemical consequences of Al and Ga Cosubstitution in Li7La3Zr2O12 solid electrolytes. Chem Mater 28:2384–2392. https://doi.org/10.1021/acs.chemmater.6b00579

    Article  CAS  Google Scholar 

  12. Hubaud AA, Schroeder DJ, Ingram BJ et al (2015) Thermal expansion in the garnet-type solid electrolyte (Li7 − Al/3)La3Zr2O12 as a function of Al content. J Alloys Comp 644:804–807. https://doi.org/10.1016/j.jallcom.2015.05.067

    Article  CAS  Google Scholar 

  13. Jonson RA, McGinn PJ (2018) Tape casting and sintering of Li7La3Zr1.75Nb0.25Al0.1O12with Li3BO3additions. Solid State Ion 323:49–55. https://doi.org/10.1016/j.ssi.2018.05.015

    Article  CAS  Google Scholar 

  14. Shin RH, Son SI, Lee SM et al (2016) Effect of Li3BO3 additive on densification and ion conductivity of garnet-type Li7La3Zr2O12 solid electrolytes of all-solid-state lithium-ion batteries. J Korean Ceram Soc 53:712–718. https://doi.org/10.4191/kcers.2016.53.6.712

    Article  CAS  Google Scholar 

  15. Ohta S, Komagata S, Seki J et al (2013) All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J Power Sources 238:53–56. https://doi.org/10.1016/j.jpowsour.2013.02.073

    Article  CAS  Google Scholar 

  16. Tadanaga K, Takano R, Ichinose T et al (2013) Low temperature synthesis of highly ion conductive Li 7 La 3 Zr 2 O 12 -Li 3 BO 3 composites. Electrochem Commun 33:51–54. https://doi.org/10.1016/j.elecom.2013.04.004

    Article  CAS  Google Scholar 

  17. Takano R, Tadanaga K, Hayashi A, Tatsumisago M (2014) Low temperature synthesis of Al-doped Li7La3Zr 2O12 solid electrolyte by a sol-gel process. Solid State Ion 255:104–107. https://doi.org/10.1016/j.ssi.2013.12.006

    Article  CAS  Google Scholar 

  18. Janani N, Deviannapoorani C, Dhivya L, Murugan R (2014) Influence of sintering additives on densification and Li + conductivity of Al doped Li7La3Zr2O12 lithium garnet. RSC Adv 4:51228–51238. https://doi.org/10.1039/c4ra08674k

    Article  CAS  Google Scholar 

  19. Wakudkar P, Deshpande AV (2019) Effect of Li4SiO4 addition in Li6.22Al0.16La3Zr1.7Ta0.3O12 garnet type solid electrolyte for lithium ion battery application. Ceram Int 45:20113–20120. https://doi.org/10.1016/j.ceramint.2019.06.276

    Article  CAS  Google Scholar 

  20. Janani N, Ramakumar S, Kannan S, Murugan R (2015) Optimization of lithium content and sintering aid for maximized Li + conductivity and density in Ta-Doped Li7La3Zr2O12. J Am Ceram Soc 98:2039–2046. https://doi.org/10.1111/jace.13578

    Article  CAS  Google Scholar 

  21. Deng Y, Eames C, Fleutot B et al (2017) Enhancing the Lithium Ion Conductivity in Lithium Superionic Conductor (LISICON) solid electrolytes through a mixed polyanion effect. ACS Appl Mater Interfaces 9:7050–7058. https://doi.org/10.1021/acsami.6b14402

    Article  CAS  Google Scholar 

  22. Liu K, Ma JT, Wang CA (2014) Excess lithium salt functions more than compensating for lithium loss when synthesizing Li6.5La3Ta0.5Zr 1.5O12 in alumina crucible. J Power Sources 260:109–114. https://doi.org/10.1016/j.jpowsour.2014.02.065

    Article  CAS  Google Scholar 

  23. Huang Z, Liu K, Chen L et al (2017) Sintering behavior of garnet-type Li6.4La3Zr1.4Ta0.6O12 in Li2CO3 atmosphere and its electrochemical property. Int J Appl Ceram Technol 14:921–927. https://doi.org/10.1111/ijac.12735

    Article  CAS  Google Scholar 

  24. Huang X, Xiu T, Badding ME, Wen Z (2018) Two-step sintering strategy to prepare dense Li-Garnet electrolyte ceramics with high Li + conductivity. Ceram Int 44:5660–5667. https://doi.org/10.1016/j.ceramint.2017.12.217

    Article  CAS  Google Scholar 

  25. Huang X, Lu Y, Song Z et al (2019) Preparation of dense Ta-LLZO/MgO composite Li-ion solid electrolyte: sintering, microstructure, performance and the role of MgO. J Energy Chem 39:8–16. https://doi.org/10.1016/j.jechem.2019.01.013

    Article  Google Scholar 

  26. Zhang W, Sun C (2019) Effects of CuO on the microstructure and electrochemical properties of garnet-type solid electrolyte. J Phys Chem Solids 135:109080. https://doi.org/10.1016/j.jpcs.2019.109080

    Article  CAS  Google Scholar 

  27. Ueno K, Hatada N, Han D, Uda T (2019) Thermodynamic maximum of y doping level in barium zirconate in co-sintering with NiO. J Mater Chem A 7:7232–7241. https://doi.org/10.1039/c8ta12245h

    Article  CAS  Google Scholar 

  28. Wang B, Bi L, Zhao XS (2018) Exploring the role of NiO as a sintering aid in BaZr0.1Ce0.7Y0.2O3-δ electrolyte for proton-conducting solid oxide fuel cells. J Power Sources 399:207–214. https://doi.org/10.1016/J.JPOWSOUR.2018.07.087

    Article  CAS  Google Scholar 

  29. Tong J, Clark D, Bernau L et al (2010) Solid-state reactive sintering mechanism for large-grained yttrium-doped barium zirconate proton conducting ceramics. J Mater Chem 20:6333–6341. https://doi.org/10.1039/c0jm00381f

    Article  CAS  Google Scholar 

  30. Nikodemski S, Tong J, O’Hayre R (2013) Solid-state reactive sintering mechanism for proton conducting ceramics. Solid State Ion 253:201–210. https://doi.org/10.1016/j.ssi.2013.09.025

    Article  CAS  Google Scholar 

  31. Chen F, Li J, Huang Z et al (2018) Origin of the Phase Transition in Lithium Garnets. J Phys Chem C 122:1963–1972. https://doi.org/10.1021/acs.jpcc.7b10911

    Article  CAS  Google Scholar 

  32. Krevit L (1988) Database Management Systems. Med Ref Serv Q 6:65–68. https://doi.org/10.1300/J115v06n04_07

    Article  Google Scholar 

  33. Wu J-F, Chen E-Y, Yu Y et al (2017) Gallium-Doped Li 7 La 3 Zr 2 O 12 garnet-type electrolytes with high lithium-ion conductivity. ACS Appl Mater Interfaces 9:1542–1552. https://doi.org/10.1021/acsami.6b13902

    Article  CAS  Google Scholar 

  34. Zhu Y, Connell JG, Tepavcevic S et al (2019) Dopant-Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal. Adv Energy Mater. 9:1803440–1803451. https://doi.org/10.1002/aenm.201803440

    Article  CAS  Google Scholar 

  35. Chen X, Wang T, Lu W et al (2018) Synthesis of Ta and Ca doped Li7La3Zr2O12 solid-state electrolyte via simple solution method and its application in suppressing shuttle effect of Li-S battery. J Alloys Comp 744:386–394. https://doi.org/10.1016/j.jallcom.2018.02.134

    Article  CAS  Google Scholar 

  36. Li C, Liu Y, He J, Brinkman KS (2017) Ga-substituted Li7La3Zr2O12: an investigation based on grain coarsening in garnet-type lithium ion conductors. J Alloys Comp 695:3744–3752. https://doi.org/10.1016/j.jallcom.2016.11.277

    Article  CAS  Google Scholar 

  37. Kumar PJ, Nishimura K, Senna M et al (2016) A novel low-temperature solid-state route for nanostructured cubic garnet Li7La3Zr2O12 and its application to Li-ion battery. RSC Adv 6:62656–62667. https://doi.org/10.1039/c6ra09695f

    Article  CAS  Google Scholar 

  38. Elisabeth M, Reyer A, Rettenwander D, et al A Raman spectroscopic study on fast ionic conducting variants of Li7La3Zr2O12. In Conference XXV ICORS2016

  39. Pfenninger R, Struzik M, Garbayo I et al (2019) A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films. Nat Energy. 4:475–483. https://doi.org/10.1038/s41560-019-0384-4

    Article  CAS  Google Scholar 

  40. Zhang Y, Deng J, Hu D et al (2019) Synergistic regulation of garnet-type Ta-doped Li7La3Zr2O12 solid electrolyte by Li + concentration and Li + transport channel size. Electrochim Acta. 296:823–829. https://doi.org/10.1016/j.electacta.2018.11.136

    Article  CAS  Google Scholar 

  41. Beyer H, Meini S, Tsiouvaras N et al (2013) Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li-air batteries. Phys Chem Chem Phys 15:11025–11037. https://doi.org/10.1039/c3cp51056e

    Article  CAS  Google Scholar 

  42. Geng H, Chen K, Yi D et al (2016) Formation mechanism of garnet-like Li7La3Zr2O12 powder prepared by solid state reaction. Rare Metal Mater Eng 45:612–616. https://doi.org/10.1016/s1875-5372(16)30081-9

    Article  CAS  Google Scholar 

  43. Abdullaev GK, Mamedov KhS, Buludov NT (1982) Sodium oxide-cadmium oxide-boron oxide system. Zh Neorg Khim 27(11):2948

  44. Zhao M, Russell P, Amoroso J et al (2020) Exploring the links between crystal chemistry, cesium retention, thermochemistry and chemical durability in single-phase andite. J Mater Sci. 55:6401–6416. https://doi.org/10.1007/s10853-020-04447-3

    Article  CAS  Google Scholar 

  45. Grote R, Zhao M, Shuller-Nickles L et al (2019) Compositional control of tunnel features in hollandite-based ceramics: structure and stability of (Ba,Cs)1.33(Zn,Ti)8O16. J Mater Sci. 54:1112–1125. https://doi.org/10.1007/s10853-018-2904-1

    Article  CAS  Google Scholar 

Download references

Acknowledgement

KSB acknowledges support of SRNL LDRD through SRNS TASK ORDER AGREEMENT (TOA) 0000453661 “Solid State Ionics: Advanced Manufacturing.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle Brinkman.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Co-authors: Changlong Li, Akihiro Ishii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Ishii, A., Roy, L. et al. Solid-state reactive sintering of dense and highly conductive Ta-doped Li7La3Z2O12 using CuO as a sintering aid. J Mater Sci 55, 16470–16481 (2020). https://doi.org/10.1007/s10853-020-05221-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05221-1

Navigation