Skip to main content

Advertisement

Log in

Reduced synthesis temperature and significantly enhanced ionic conductivity for Li6.1Ga0.3La3Zr2O12 electrolyte prepared with sintering aid CuO

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Garnet-type Li7La3Zr2O12 (LLZO) is considered as a promising solid electrolyte. However, the synthesis of LLZO often requires a high temperature, which may lead to the evaporation of the lithium and result in a decrease in ionic conductivity. Therefore, it is an important issue how to reduce the synthesis temperature of LLZO and simultaneously increase its ionic conductivity. Herein, we synthesized garnet-type solid electrolytes of Li6.1Ga0.3La3Zr2O12 (LLZO-Ga) with x wt% CuO (x = 0, 0.2, 0.5, 1, 2) by the traditional solid-state reaction method, in which CuO was introduced as a sintering aid to reduce the sintering temperature of LLZO-Ga and increase its Li-ion conductivity. It is found that adding a small amount of CuO as an additive can reduce the sintering temperature from 1100 ℃ to about 1000 ℃. As a result, when the amount of CuO is 0.5 wt%, LLZO-Ga shows the highest room-temperature ionic conductivity and the lowest activation energy, which are 1.111 mS/cm and 0.27 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Armand AM, Tarascon JM (2001) Issues and challenges facing rechargeable lithium batteries. Nature Nature 414:359–367

    PubMed  Google Scholar 

  2. Nishi Y (2001) Lithium ion secondary batteries; past 10 years and the future. J Power Sources 100:101–106

    Article  CAS  Google Scholar 

  3. Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40:2525–2540

    Article  CAS  Google Scholar 

  4. Wu JF, Pang WK, Peterson VK, Wei L, Guo X (2017) Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries. ACS Appl Mater Interfaces 9:12461–12468

    Article  CAS  Google Scholar 

  5. Thangadurai V, Narayanan S, Pinzaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 43:4714–4727

    Article  CAS  Google Scholar 

  6. Pervez SA, Vinayan BP, Cambaz MA, Melinte G, Diemant T, Braun T, Karkera G, Behm RJ, Fichtner M (2020) Electrochemical and compositional characterization of solid interphase layers in an interface-modified solid-state Li–sulfur battery. J Mater Chem A 8:16451–16462

    Article  CAS  Google Scholar 

  7. Zhang W, Nie J, Li F, Wang ZL, Sun C (2018) A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy 45:413–419

    Article  CAS  Google Scholar 

  8. Nguyen QH, Luu VT, Nguyen HL, Lee YW, Cho Y, Kim SY, Jun YS, Ahn W (2020) Li7La3Zr2O12 garnet solid polymer electrolyte for highly stable all-solid-state batteries. Front Chem 8:619832

    Article  CAS  Google Scholar 

  9. Zhao M, Li BQ, Peng HJ, Yuan H, Wei JY, Huang JQ (2020) Lithium-sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew Chem Int Ed Engl 59:12636–12652

    Article  CAS  Google Scholar 

  10. Li Y, Chen X, Dolocan A, Cui Z, Xin S, Xue L, Xu H, Park K, Goodenough JB (2018) Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J Am Chem Soc 140:6448–6455

    Article  CAS  Google Scholar 

  11. Thangadurai V, Pinzaru D, Narayanan S, Baral AK (2015) Fast solid-state Li ion conducting garnet-type structure metal oxides for energy storage. J Phys Chem Lett 6:292–299

    Article  CAS  Google Scholar 

  12. Samson AJ, Hofstetter K, Bag S, Thangadurai V (2019) A bird’s-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy Environ Sci 12:2957–2975

    Article  CAS  Google Scholar 

  13. Alexander GV, Indu MS, Murugan R (2021) Review on the critical issues for the realization of all-solid-state lithium metal batteries with garnet electrolyte: interfacial chemistry, dendrite growth, and critical current densities. Ionics 27:4105–4126

    Article  CAS  Google Scholar 

  14. Xu S, Hu L (2020) Towards a high-performance garnet-based solid-state Li metal battery: a perspective on recent advances. J Power Sources 472:228571

    Article  CAS  Google Scholar 

  15. Wang CW, Fu K, Kammampata SP, McOwen DW, Samson AJ, Zhang L, Hitz GT, Nolan AM, Wachsman ED, Mo YF, Thangadurai V, Hu LB (2020) Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem Rev 120:4257–4300

    Article  CAS  Google Scholar 

  16. Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angewandte Chemie-International Edition 46:7778–7781

    Article  CAS  Google Scholar 

  17. Liu Q, Geng Z, Han C, Fu Y, Li S, Y-b He F, Kang BL (2018) Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. J Power Sources 389:120–134

    Article  CAS  Google Scholar 

  18. Buschmann H, Dolle J, Berendts S, Kuhn A, Bottke P, Wilkening M, Heitjans P, Senyshyn A, Ehrenberg H, Lotnyk A, Duppel V, Kienle L, Janek J (2011) Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12.” Phys Chem Chem Phys 13:19378

    Article  CAS  Google Scholar 

  19. Geiger CA, Alekseev E, Lazic B, Fisch M, Armbruster T, Langner R, Fechtelkord M, Kim N, Pettke T, Weppner W (2011) Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorg Chem 50:1089–1097

    Article  CAS  Google Scholar 

  20. Chen Y, Rangasamy E, CR dela Cruz, C Liang, K An, (2015) A study of suppressed formation of low-conductivity phases in doped Li7La3Zr2O12 garnets by in situ neutron diffraction. J Mater Chem A 3:22868–22876

    Article  CAS  Google Scholar 

  21. Abrha LH, Hagos TT, Nikodimos Y, Bezabh HK, Berhe GB, Hagos TM, Huang CJ, Tegegne WA, Jiang SK, Weldeyohannes HH, Wu SH, Su WN, Hwang BJ (2020) Dual-doped cubic garnet solid electrolytes with superior air stability. ACS Appl Mater Interfaces 12:25709–25717

    Article  CAS  Google Scholar 

  22. Kim M, Kim G, Lee H (2021) Tri-doping of sol-gel synthesized garnet-type oxide solid-state electrolyte. Micromachines (Basel) 12(2):134

    Article  Google Scholar 

  23. Botros M, Djenadic R, Clemens O, Moller M, Hahn H (2016) Field assisted sintering of fine-grained Li7-3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance. J Power Sources 309:108–115

    Article  CAS  Google Scholar 

  24. He LC, Oh JAS, Chua JJJ, Zhou HH (2021) Solid-state electrolytes: advances and perspectives. Funct Mater Lett 14:2130001

    Article  CAS  Google Scholar 

  25. Mukhopadhyay S, Thompson T, Sakamoto J, Huq A, Wolfenstine J, Allen JL, Bernstein N, Stewart DA, Johannes MD (2015) Structure and stoichiometry in supervalent doped Li7La3Zr2O12. Chem Mater 27:3658–3665

    Article  CAS  Google Scholar 

  26. Hu Z, Liu H, Ruan H, Hu R, Su Y, Zhang L (2016) High Li-ion conductivity of Al-doped Li7La3Zr2O12 synthesized by solid-state reaction. Ceram Int 42:12156–12160

    Article  CAS  Google Scholar 

  27. Gai J, Zhao E, Ma F, Sun D, Ma X, Jin Y, Wu Q, Cui Y (2018) Improving the Li-ion conductivity and air stability of cubic Li7La3Zr2O12 by the co-doping of Nb, Y on the Zr site. J Eur Ceram Soc 38:1673–1678

    Article  CAS  Google Scholar 

  28. Shen L, Wang L, Wang Z, Jin C, Peng L, Pan X, Sun J, Yang R (2019) Preparation and characterization of Ga and Sr co-doped Li7La3Zr2O12 garnet-type solid electrolyte. Solid State Ionics 339:114992

    Article  CAS  Google Scholar 

  29. Kobi S, Amardeep AV, Bhargava P, Mukhopadhyay A (2020) Al and Mg Co-doping towards development of air-stable and Li-ion conducting Li-La-zirconate based solid electrolyte exhibiting low electrode/electrolyte interfacial resistance. J Electrochem Soc 167:120519

    Article  CAS  Google Scholar 

  30. Cao Z, Li Y, Su J, Zhao J, Li Y, Yan S, Liu Q, He T, Zhang H, Li G-R (2021) Y and Sb co-doped Li7La3Zr2O12 electrolyte for all solid-state lithium batteries. Ionics 27:1861–1870

    Article  CAS  Google Scholar 

  31. Mishra M, Hsu C-W, Chandra Rath P, Patra J, Lai H-Z, Chang T-L, Wang C-Y, Wu T-Y, Lee T-C, Chang J-K (2020) Ga-doped lithium lanthanum zirconium oxide electrolyte for solid-state Li batteries. Electrochim Acta 353:136536

    Article  CAS  Google Scholar 

  32. Chen C, Sun Y, He LC, Kotobuki M, Hanc E, Chen Y, Zeng KY, Lu L (2020) Microstructural and electrochemical properties of Al- and Ga-Doped Li7La3Zr2O12 garnet solid electrolytes. ACS Applied Energy Materials 3:4708–4719

    Article  CAS  Google Scholar 

  33. Jalem R, Yamamoto Y, Shiiba H, Nakayama M, Munakata H, Kasuga T, Kanamura K (2013) Concerted migration mechanism in the Li ion dynamics of garnet-type Li7La3Zr2O12. Chem Mater 25:425–430

    Article  CAS  Google Scholar 

  34. Rosero-Navarro NC, Yamashita T, Miura A, Higuchi M, Tadanaga K, Stevenson JW (2017) Effect of sintering additives on relative density and Li-ion conductivity of Nb-doped Li7La3ZrO12 solid electrolyte. J Am Ceram Soc 100:276–285

    Article  CAS  Google Scholar 

  35. Fagg DP, Kharton VV, Frade JR (2002) P-type electronic transport in Ce0.8Gd0.2O2-delta: the effect of transition metal oxide sintering aids. J Electroceram 9:199–207

    Article  CAS  Google Scholar 

  36. Qin S, Zhu X, Jiang Y, Me Ling ZHu, Zhu J (2018) Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity. Appl Phys Lett 112:113901

    Article  CAS  Google Scholar 

  37. Jiang Y, Zhu X, Qin S, Me Ling J, Zhu, (2017) Investigation of Mg2+, Sc3+ and Zn2+ doping effects on densification and ionic conductivity of low-temperature sintered Li7La3Zr2O12 garnets. Solid State Ionics 300:73–77

    Article  CAS  Google Scholar 

  38. Ashuri M, Golmohammad M, Soleimany Mehranjani A, Faghihi Sani M (2021) Al-doped Li7La3Zr2O12 garnet-type solid electrolytes for solid-state Li-Ion batteries. J Mater Sci: Mater Electron 32:6369–6378

    CAS  Google Scholar 

  39. Zhang Y, Luo D, Luo W, Du S, Deng Y, Deng J (2020) High-purity and high-density cubic phase of Li7La3Zr2O12 solid electrolytes by controlling surface/volume ratio and sintering pressure. Electrochim Acta 359:136965

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Science and Technology of China (MOST) (Grant No. 2013CB934700), Sichuan Science and Technology Program (Grant No. 2020YFH0047), and the Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 964 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Jiang, Y., Cheng, X. et al. Reduced synthesis temperature and significantly enhanced ionic conductivity for Li6.1Ga0.3La3Zr2O12 electrolyte prepared with sintering aid CuO. Ionics 28, 5071–5080 (2022). https://doi.org/10.1007/s11581-022-04761-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04761-7

Keywords

Navigation