Skip to main content
Log in

Dielectric, ferroelectric, piezoelectric properties, and conduction behavior of (Bi0.5Na0.5)0.94+xBa0.06TiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electrical properties and conduction behavior of (Bi0.5Na0.5)0.94+xBa0.06TiO3 (x = 0, 0.01; denoted as BNBT, BNBT + 0.01BN) ceramics were studied. Both samples demonstrated a single-phase perovskite structure. Compared to the BNBT sample, the BNBT + 0.01BN sample showed a reduction in grain size and decreased values for Curie temperature (Tm) and depolarization temperature (Td). Normalized spectroscopic plots of M"/M"max and Z"/Z"max revealed a single relaxation peak. The complex impedance plots were modeled using an equivalent circuit, and the grain resistance (Rg) decreases with increasing temperature. At 500 °C, the Rg values for BNBT and BNBT + 0.01BN samples were 339.97 and 886.98 kΩ × cm, respectively. Jonscher’s law was applied to fit the AC conductivity, and the obtained n values indicated different conduction mechanisms for the two samples. Additionally, the conduction activation energy (Econ) for DC conductivity followed the Arrhenius relation. Introducing a small (Bi,Na) excess suppresses oxygen and cation vacancies, significantly increasing resistivity. Consequently, the BNBT + 0.01BN sample exhibited excellent remanent polarization (Pr) of 34.2 μC/cm2 and piezoelectric constant (d33) of 135 pC/N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. T. Zheng, J. Wu, D. Xiao, J. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 98, 552–624 (2018)

    Article  CAS  Google Scholar 

  2. J. Rodel, K.G. Webber, R. Dittmer, Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35, 1659 (2015)

    Article  Google Scholar 

  3. M. Waqar, H. Wu, J. Chen, K. Yao, J. Wang, Evolution from lead-based to lead-free piezoelectrics: engineering of lattices, domains, boundaries, and defects leading to giant response. Adv. Mater. 34, 2106845 (2022)

    Article  CAS  Google Scholar 

  4. X. Zhou, G. Xue, H. Luo, C.R. Bowen, D. Zhang, Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics. Prog. Mater. Sci. 122, 100836 (2021)

    Article  CAS  Google Scholar 

  5. T. Takenaka, K.I. Maruyama, K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236 (1991)

    Article  CAS  Google Scholar 

  6. W.J. Cao, R.J. Lin, X. Hou, L. Li, F. Li, D. Bo, C. Wang, Interfacial polarization restriction for ultrahigh energy-storage density in lead-free ceramics. Adv. Funct. Mater. 35, 2301027 (2023)

    Article  Google Scholar 

  7. H. Zhang, T. Wei, Q. Zhang, W. Ma, P. Fan, D. Salamon, Z.G. Ye, A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J. Mater. Chem. C. 8, 16648–16667 (2020)

    Article  CAS  Google Scholar 

  8. P. Mao, Y. Guo, G. Lu, Q. Yan, R. Kang, T. Wang, L. Zhang, Synergistic effect of multi-phase and multi-domain structures induced high energy storage performances under low electric fields in Na0.5Bi0.5TiO3-based lead-free ceramics. Chem. Eng. J. 472, 144973 (2023)

    Article  CAS  Google Scholar 

  9. W. Zhu, H. Guo, Z.Y. Shen, F. Song, W. Luo, Z. Wang, Y. Li, Boosting dielectric temperature stability in BNBST-based energy storage ceramics by Nb2O5 modification. J. Am. Ceram. Soc. 106, 3633–3642 (2023)

    Article  CAS  Google Scholar 

  10. M. Acosta, J. Zang, W. Jo, J. Rödel, High-temperature dielectrics in CaZrO3-modified Bi1/2Na1/2TiO3-based lead-free ceramics. J. Eur. Ceram. Soc. 32, 4327–4334 (2012)

    Article  CAS  Google Scholar 

  11. J.G. Hao, W. Li, J.W. Zhai, H. Chen, Progress in high-strain perovskite piezoelectric ceramics. Mater. Sci. Eng. R. Rep. 135, 1–57 (2019)

    Article  Google Scholar 

  12. X. Wu, L. Wen, C. Wu, X. Lv, J. Yin, J. Wu, Insight into the large electro-strain in bismuth sodium titanate-based relaxor ferroelectrics: From fundamentals to regulation methods. Mater. Sci. Technol. 150, 27–48 (2023)

    Article  CAS  Google Scholar 

  13. X.S. Qiao, X.M. Chen, H.L. Lian, W.T. Chen, J.P. Zhou, P. Liu, Microstructure and electrical properties of nonstoichiometric 0.94(Na0.5Bi0.5+x)TiO3–0.06BaTiO3 lead-free ceramics. J. Am. Ceram. Soc. 99, 198–205 (2016)

    Article  CAS  Google Scholar 

  14. Y. Hiruma, H. Nagata, T. Takenaka, Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J. Appl. Phys. 105, 084112 (2009)

    Article  Google Scholar 

  15. F. Yang, M. Li, L. Li, P. Wu, E. Pradal-Velázquez, D.C. Sinclair, Defect chemistry and electrical properties of sodium bismuth titanate perovskite. J. Mater. Chem. A 6, 5243–5254 (2018)

    Article  CAS  Google Scholar 

  16. I.T. Seo, S. Steiner, T. Frömling, The effect of A site non-stoichiometry on 0.94(NayBix)TiO3–0.06BaTiO3. J. Eur. Ceram. Soc. 37, 1429–1436 (2017)

    Article  CAS  Google Scholar 

  17. Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, H.H. Chong, S.S. Kim, Effects of Na nonstoichiometry in (Bi0.5Na0.5+x)TiO3 ceramics. Appl. Phys. Lett. 96, 022901 (2010)

    Article  Google Scholar 

  18. M. Li, M.J. Pietrowski, R.A. De Souza, H. Zhang, I.M. Reaney, S.N. Cook, D.C. Sinclair, A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat. Mater. 13, 31–35 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. X. Li, Q. Jing, Z. Xi, P. Liu, W. Long, P. Fang, Dielectric relaxation and electrical conduction in (BixNa1-x)0.94Ba0.06TiO3 ceramics. J. Am. Ceram. Soc. 101, 789–799 (2018)

    Article  CAS  Google Scholar 

  20. X.S. Qiao, X.M. Chen, H.L. Lian, J.P. Zhou, P. Liu, Dielectric, ferroelectric, piezoelectric properties and impedance analysis of nonstoichiometric (Bi0.5Na0.5)0.94+xBa0.06TiO3 ceramics. J. Eur. Ceram. Soc. 36, 3995–4001 (2016)

    Article  CAS  Google Scholar 

  21. R.J. Tilley, Defects in solids (John Wiley & Sons, Hoboken, 2008)

    Book  Google Scholar 

  22. M. Li, H. Zhang, S.N. Cook, L. Li, J.A. Kilner, I.M. Reaney, D.C. Sinclair, Dramatic influence of A-site nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Na0.5Bi0.5TiO3. Chem. Mater. 27, 629–634 (2015)

    Article  CAS  Google Scholar 

  23. A.M. Zhang, R.Y. Jing, M. Zhuang, H. Hou, L. Zhang, J. Zhang, L. Jin, Nonstoichiometric effect of A-site complex ions on structural, dielectric, ferroelectric, and electrostrain properties of bismuth sodium titanate ceramics. Ceram. Int. 47, 32747–32755 (2021)

    Article  CAS  Google Scholar 

  24. E.M. Anton, W. Jo, D. Damjanovic, J. Rodel, Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics. J. Appl. Phys. 110, 094108 (2011)

    Article  Google Scholar 

  25. M. Chen, Q. Xu, B.H. Kim, B.K. Ahn, J.H. Ko, W.J. Kang, O.J. Nam, Structure and electrical properties of (Na0.5Bi0.5)1-xBaxTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 28, 843–849 (2008)

    Article  Google Scholar 

  26. K. Uchino, E. Sadanaga, T. Hirose, Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 72, 1555–1558 (1989)

    Article  CAS  Google Scholar 

  27. J.G. Fisher, D. Rout, K.S. Moon, S.J.L., Kang, High-temperature X-ray diffraction and Raman spectroscopy study of (K0.5Na0.5)NbO3 ceramics sintered in oxidizing and reducing atmospheres. Mater. Chem. Phys. 120, 263–271 (2010)

    Article  CAS  Google Scholar 

  28. Z.H. Liu, H. Wu, Y. Yuan, H.Y. Wan, Z. Luo, P. Gao, Z.G. Ye, Recent progress in bismuth-based high Curie temperature piezo-/ferroelectric perovskites for electromechanical transduction applications. Curr. Opin. Solid State Mater. Sci. 26, 101016 (2022)

    Article  CAS  Google Scholar 

  29. L. Soonil, C.A. Rall, Z.K. Liu, Modified phase diagram for the barium oxide-titanium dioxide system for the ferroelectric barium titanate. J. Am. Ceram. Soc. 90, 2589–2594 (2007)

    Article  Google Scholar 

  30. Q. Xu, D.P. Huang, M. Chen, W. Chen, H.X. Liu, B.H. Kim, Effect of bismuth excess on ferroelectric and piezoelectric properties of a (Na0.5Bi0.5)TiO3-BaTiO3 composition near the morphotropic phase boundary. J. Alloys Compd. 471, 310 (2009)

    Article  CAS  Google Scholar 

  31. Y. Guo, M. Gu, H. Luo, Y. Liu, R.L. Withers, Composition-induced antiferroelectric phase and giant strain in lead-free (Nay, Biz)Ti1-xO3(1x)-xBaTiO3 ceramics. Phys. Rev. B 83, 054118 (2011)

    Article  Google Scholar 

  32. X. Liu, R. Rao, J. Shi, J. He, Y. Zhao, J. Liu, H. Du, Effect of oxygen vacancy and A-site-deficiency on the dielectric performance of BNT-BT-BST relaxors. J. Alloys Compd. 875, 159999 (2021)

    Article  CAS  Google Scholar 

  33. Y.Z. Qiu, X.M. Chen, H.L. Lian, J.P. Ma, W.Q. Ouyang, Structure and electrical behavior of unpoled and poled 0.97(Bi0.5Na0.5)0.94Ba0.06TiO3–0.03BiAlO3 ceramics. Mater. Chem. Phys. 202, 97–203 (2017)

    Article  Google Scholar 

  34. Y.Z. Qiu, Z.D. Yu, Effect of sintering temperature on structure and electrical properties of ZnO-added (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. J. Mater. Sci: Mater. Electron. 34, 88 (2023)

    CAS  Google Scholar 

  35. Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, T.G. Park, Effects of Bi nonstoichiometry in (Bi0.5+xNa0.5) TiO3 ceramics. Appl. Phys. Lett. 98, 1 (2011)

    Article  Google Scholar 

  36. K. Wang, J.F. Li, Domain engineering of lead-free Li-modified (K, Na)NbO3 polycrystals with highly enhanced piezoelectricity. Adv. Funct. Mater. 20, 1924–1929 (2010)

    Article  CAS  Google Scholar 

  37. E. Barsoukov, J.R. Macdonald, Impedance spectroscopy: theory, experiment, and applications (John Wiley, Hoboken, 2018)

    Book  Google Scholar 

  38. A. Feteira, Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J. Am. Ceram. Soc. 92, 967–983 (2009)

    Article  CAS  Google Scholar 

  39. S. Prasertpalichat, W. Schmidt, D.P. Cann, Effects of A-site nonstoichiometry on oxide ion conduction in 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics. J. Adv. Die. 6, 1650012 (2016)

    Article  CAS  Google Scholar 

  40. J.T. Irvine, D.C. Sinclair, A.R. West, Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2, 132–138 (1990)

    Article  CAS  Google Scholar 

  41. J. Kolte, A.S. Daryapurkar, D.D. Gulwade, P. Gopalan, Microwave sintered Bi0.90La0.10Fe0.95Mn0.05O3 nanocrystalline ceramics: Impedance and modulus spectroscopy. Ceram. Int. 42, 12914–12921 (2016)

    Article  CAS  Google Scholar 

  42. A.K. Jonscher, The universal dielectric response. Nat. 267, 673–679 (1977)

    Article  CAS  Google Scholar 

  43. P. Gupta, R. Padhee, P.K. Mahapatra, R.N.P. Choudhary, S. Das, Structural and electrical properties of Bi3TiVO9 ferroelectric ceramics. J. Alloys Compd. 731, 1171–1180 (2018)

    Article  CAS  Google Scholar 

  44. W. Hizi, H. Rahmouni, K. Khirouni, E. Dhahri, Consistency between theoretical conduction models and experimental conductivity measurements of strontium-doped lanthanum manganite. J. Alloys Compd. 957, 170418 (2023)

    Article  CAS  Google Scholar 

  45. S. Nasri, M. Megdiche, M. Gargouri, DC conductivity and study of AC electrical conduction mechanisms by non-overlapping small polaron tunneling model in LiFeP2O7 ceramic. Ceram. Int. 42, 943–951 (2016)

    Article  CAS  Google Scholar 

  46. S.R. Elliott, AC conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135 (1987)

    Article  CAS  Google Scholar 

  47. R. Punia, R.S. Kundu, M. Dult, S. Murugavel, N. Kishore, Temperature and frequency dependent conductivity of bismuth zinc vanadate semiconducting glassy system. J. Appl. Phys. 112, 083701 (2012)

    Article  Google Scholar 

  48. A. Ghosh, Ac conduction in iron bismuthate glassy semiconductors. Phys. Rev. B 42, 1388 (1990)

    Article  CAS  Google Scholar 

  49. G. Singh, V.S. Tiwari, P.K. Gupta, Role of oxygen vacancies on relaxation and conduction behavior of KNbO3 ceramic. J. Appl. Phys. 107, 064103 (2010)

    Article  Google Scholar 

  50. Z.D. Yu, X.M. Chen, H.L. Lian, Q. Zhang, W.X. Wu, Microstructure and electrical properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics sintered in low pO2 atmosphere. J. Mater. Sci: Mater. Electron. 29, 19043–19051 (2018)

    CAS  Google Scholar 

  51. K.S. Rao, B. Tilak, K.C.V. Rajulu, A. Swathi, H. Workineh, A diffuse phase transition study on Ba2+ substituted (Na0.5Bi0.5)TiO3 ferroelectric ceramic. J. Alloys Compd. 509, 7121–7129 (2011)

    Article  CAS  Google Scholar 

  52. S. Dwivedi, M. Badole, H.N. Vasavan, S. Kumar, Influence of annealing environments on the conduction behaviour of KNN-based ceramics. Ceram. Int. 48, 18057–18066 (2022)

    Article  CAS  Google Scholar 

  53. O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros, Frequency-temperature response of ferroelectromagnetic Pb(Fe1/2Nb1/2)O3 ceramics obtained by different precursors. Part I. Structural and thermo-electrical characterization. J. Appl. Phys. 97, 084107 (2005)

    Article  Google Scholar 

  54. B. Guiffard, E. Boucher, L. Eyraud, L. Lebrun, D. Guyomar, Influence of donor co-doping by niobium or fluorine on the conductivity of Mn doped and Mg doped PZT ceramics. J. Eur. Ceram. Soc. 25, 2487–2490 (2005)

    Article  CAS  Google Scholar 

  55. R. Waser, T. Baiatu, K.H. Hardtl, Dc electrical degradation of perovskite-type titanates: I, ceramics. J. Am. Ceram. Soc. 73, 1645 (1990)

    Article  CAS  Google Scholar 

  56. M.S. Islam, Ionic transport in ABO3 perovskite oxides: a computer modelling tour. J. Mater. Chem. 10, 1027–1038 (2000)

    Article  CAS  Google Scholar 

  57. H. Zhang, A.H. Ramadan, R.A. De Souza, Atomistic simulations of ion migration in sodium bismuth titanate (NBT) materials: towards superior oxide-ion conductors. J. Mater. Chem. A 6, 9116–9123 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

This work has been supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department (Grant No. 23JK0530) and Xi’an Traffic Engineering Institute Key Research Project (Grant No. 2024KY-05).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Yanzi Qiu: Characterization, Data curation, Writing original draft, Funding acquisition, Editing, Supervision. Zide Yu: Writing review & editing, Investigation, Formal analysis, Supervision. Xiangkun Wang: Characterization, Data curation. Xiaoshuang Qiao: Writing review & editing, Formal analysis, Supervision. All authors commented on previous versions of manuscripts. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zide Yu or Xiaoshuang Qiao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent for publication

The authors declare that this manuscript has not been published previously and is not under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Yu, Z., Wang, X. et al. Dielectric, ferroelectric, piezoelectric properties, and conduction behavior of (Bi0.5Na0.5)0.94+xBa0.06TiO3 ceramics. J Mater Sci: Mater Electron 35, 621 (2024). https://doi.org/10.1007/s10854-024-12387-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12387-w

Navigation