Skip to main content
Log in

Effect of A-site and B-site ion substitution on the electrical and thermoelectric properties of nanostructured perovskite CaMnO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The impact of A-site and B-site ion substitution (A-site: Sr and B-site: Co) on the electrical and thermoelectric properties of the perovskite CaMnO3 nanoparticles has been investigated. The perovskite nanoparticles have been prepared by sol–gel hydrothermal method at 200 °C followed by annealing at optimum temperature.  Thermal, structural, morphological, elemental, functional, optical, electrical, and thermoelectric properties of the samples have been performed using TG-DTA analysis, powder X-ray Diffraction, Raman analysis, Scanning Electron Microscopy with Energy Dispersive X-ray Analysis, Fourier Transform Infrared Spectroscopy, UV–Vis spectroscopy, and thermoelectric measurement. Powder XRD analysis reveals the perovskite structure and the optimized annealing temperature. Surfactants reduced the average particle size which improves the thermopower. The decrease in substitution ionic size causes an increase in lattice parameters and unit cell volume. Oxygen-deficient nanoparticles were observed with symmetric Raman lines and the mesoporous structured nanoparticles enhanced the surface area leading to higher electrical conductivity. The temperature dependence thermoelectric measurement was performed between ambient temperature and 673 K. The electrical resistivity depends on the nature of substituent ions. The absolute Seebeck coefficient values for pure CaMnO3, A-site, and B-site substituted were − 312, − 287, and 98µVK−1, respectively. The systematic analysis revealed that ion substitution at the A-site and B-site influenced significant changes in the crystal structure and the type of carrier concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within this paper. Data sets generated during the current study are available from the corresponding author based on reasonable request. Data will be made available on reasonable request.

References

  1. X. Zhang, L.-D. Zhao, Thermoelectric materials: Energy conversion between heat and electricity. J. Materiomics. 1(2), 92–105 (2015). https://doi.org/10.1016/j.jmat.2015.01.001

    Article  Google Scholar 

  2. J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, New and Old concepts in Thermoelectric materials. Angew. Chem. Int. Ed. 48(46), 8616–8639 (2009). https://doi.org/10.1002/anie.200900598

    Article  CAS  Google Scholar 

  3. I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power inNaCo2O4 single crystals. Phys. Rev. B 56(20), R12685–R12687 (1997). https://doi.org/10.1103/physrevb.56.r12685

    Article  CAS  Google Scholar 

  4. M.A. Peña, J.L.G. Fierro, Chemical structures and performance of Perovskite Oxides. Chem. Rev. 101(7), 1981–2018 (2001). https://doi.org/10.1021/cr980129f

    Article  CAS  PubMed  Google Scholar 

  5. E. Konysheva, J.T.S. Irvine, Evolution of conductivity, structure and thermochemical stability of lanthanum manganese iron nickelate perovskites. J. Mater. Chem. 18(42), 5147 (2008). https://doi.org/10.1039/b807145d

    Article  CAS  Google Scholar 

  6. F. Azough, C. Leach, R. Freer, Effect of CeO2 on the sintering behaviour, cation order and properties of Ba3Co0.7Zn0.3Nb2O9 ceramics. J. Eur. Ceram. Soc. 26(10–11), 1883–1887 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.0

    Article  CAS  Google Scholar 

  7. R. Ang, A.U. Khan, N. Tsujii, K. Takai, R. Nakamura, T. Mori, Thermoelectricity generation and electron–magnon scattering in a natural chalcopyrite mineral from a deep-sea hydrothermal vent. Angew Chem. Int. Ed. 54, 12909–12913 (2015). https://doi.org/10.1002/anie.201505517

    Article  CAS  Google Scholar 

  8. H. Matsuura, M. Ogata, T. Mori, E. Bauer, Theory of huge thermoelectric effect based on a magnon drag mechanism: Application to thin-film heusler alloy. Phys. Rev. B 104, 214421 (2021). https://doi.org/10.1103/PhysRevB.104.214421

    Article  CAS  Google Scholar 

  9. M. Gaurav Tatrari, F.U. Ahmed, Shah, Synthesis, thermoelectric and energy storage performance of transition metal oxides composites. Coord. Chem. Rev. 498, 215470 (2024). https://doi.org/10.1016/j.ccr.2023.215470

    Article  CAS  Google Scholar 

  10. F. Zeng, Y. Zhang, L. Pan, J. Ouyang, Q. Zhang, Recent developments in flexible thermoelectrics: from materials to devices. Renew. Sustain. Energy Rev. 137, 110448 (2021). https://doi.org/10.1016/j.rser.2020.110448

    Article  Google Scholar 

  11. H. Ke Li, Y.W. Guo, M. Tang, X. Zhao, A. Tong, Y. Peng, Q. Li, Z. Yuan, ATM inhibition induces synthetic lethality and enhances sensitivity of PTEN-deficient breast cancer cells to cisplatin. Exp. Cell Res. 366, 1 (2018). https://doi.org/10.1016/j.yexcr.2018.03.006

    Article  CAS  Google Scholar 

  12. J. Dho, W.S. Kim, E.O. Chi, N.H. Hur, S.H. Park, H.-C. Ri, Colossal magneto resistance in perovskite manganite induced by localized moment of rare earth ion. Solid State Commun. 125(3–4), 143–147 (2003). https://doi.org/10.1016/s0038-1098(02)00775-5

    Article  CAS  Google Scholar 

  13. M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi, H. Arai, Electrical Transport Properties and High-Temperature Thermoelectric performance of (Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, in, Sn, Sb, Pb, Bi). J. Solid State Chem. 120(1), 105–111 (1995). https://doi.org/10.1006/jssc.1995.1384

    Article  CAS  Google Scholar 

  14. R.V. Mangalaraja, J. Mouzon, P. Hedström, I. Kero, K.V.S. Ramam, C.P. Camurri, M. Odén, Combustion synthesis of Y2O3 and Yb–Y2O3. J. Mater. Process. Technol. 208(1–3), 415–422 (2008). https://doi.org/10.1016/j.jmatprotec.2008.01.023

    Article  CAS  Google Scholar 

  15. N.P. Bansal, Low temperature synthesis of CaO-SiO2 glasses having stable liquid-liquid immiscibility by the sol–gel process. J. Mater. Sci. 27(11), 2922–2933 (1992). https://doi.org/10.1007/bf01154101

    Article  CAS  Google Scholar 

  16. C.S. Sanmathi, Y. Takahashi, D. Sawaki, Y. Klein, R. Retoux, I. Terasaki, J.G. Noudem, Microstructure control on thermoelectric properties of Ca0.96Sm0.04MnO3 synthesised by co-precipitation technique. Mater. Res. Bull. 45(5), 558–563 (2010). https://doi.org/10.1016/j.materresbull.2010.01.023

    Article  CAS  Google Scholar 

  17. S.B. Mary, M. Francis, V.G. Sathe, V. Ganesan, A.L. Rajesh, Enhanced thermoelectric property of nanostructured CaMnO3 by sol–gel hydrothermal method. Physica B (2019). https://doi.org/10.1016/j.physb.2019.411707

    Article  Google Scholar 

  18. S. Komarneni, Y.D. Noh, J.Y. Kim, S.H. Kim, H. Katsuki, Solvothermal/ Hydrothermal Synthesis of Metal Oxides and Metal Powders with and without microwaves. Z. Für Naturforschung B 65(8), 1033–1037 (2010). https://doi.org/10.1515/znb-2010-0809

    Article  CAS  Google Scholar 

  19. K. Sadhana, R.S. Shinde, S.R. Murthy, Synthesis of nano crystalline yig using microwave-hydrothermal method. Int. J. Mod. Phys. B 17, 3637–3642 (2009). https://doi.org/10.1142/s0217979209063109

    Article  Google Scholar 

  20. T.M.H. Dang, V.D. Trinh, D.H. Bui, M.H. Phan, D.C. Huynh, Sol–gel hydrothermal synthesis of strontium hexaferrite nanoparticles and the relation between their crystal structure and high coercivity properties. Adv. Nat. Sci. Nanosci. Nanotechnol 3, 025015 (2012). https://doi.org/10.1088/2043-6262/3/2/025015

    Article  CAS  Google Scholar 

  21. M. Mouyane, B. Itaalit, J. Bernard, D. Houivet, J.G. Noudem, Flash combustion synthesis of electron doped-CaMnO3 thermoelectric oxides. Powder Technol. 264, 71–77 (2014). https://doi.org/10.1016/j.powtec.2014.05.022

    Article  CAS  Google Scholar 

  22. L.M. Fang, Z.J. Li, S. Zhu, C.M. Liu, W.L. Zhou, L.M. Wan, Synthesis and characteristics of Fe3+-doped SnO2 nanoparticles via sol–gel-calcinations or sol–gel-hydrothermal route. J. Alloys Compd. 454(1–2), 261–267 (2008). https://doi.org/10.1016/j.jallcom.2006.12.014

    Article  CAS  Google Scholar 

  23. E.I. Seck, J.M. Doña-Rodríguez, E. Pulido Melián, C. Fernández-Rodríguez, O.M. González-Díaz, D. Portillo-Carrizo, J. Pérez-Peña, Comparative study of nanocrystalline titanium dioxide obtained through sol–gel and sol–gel–hydrothermal synthesis. J. Colloid Interface Sci. 400, 31–40 (2013). https://doi.org/10.1016/j.jcis.2013.03.019]

    Article  CAS  PubMed  Google Scholar 

  24. L.R.-G.R. Cortes-Gil, J.M. Alonso, M. Jose, J.M. Gonzalez-Calbet, M. Vallet-Regí, Revisiting the role of vacancies in manganese related perovskites. Open. Inorg. Chem. J. 1, 37–46 (2007). https://doi.org/10.2174/1874098700701010037

    Article  Google Scholar 

  25. K. Vijayanandhini, Phase conversions in calcium manganites with changing Ca/Mn ratios and their influence on the electrical transport properties. J. Mater. Sci. Mater. Electron. 20(5), 445–454 (2009). https://doi.org/10.1007/s10854-008-9749-3

    Article  CAS  Google Scholar 

  26. M.M. Barbooti, D.A. Al-Sammerrai, Thermal decomposition of citric acid. Thermochim Acta 98, 119–126 (1986). https://doi.org/10.1016/0040-6031(86)87081-2

    Article  CAS  Google Scholar 

  27. J.W. Park, D.H. Kwak, S.H. Yoon, S.C. Choi, Thermoelectric properties of Bi, Nb co-substituted CaMnO3 at high temperature. J. Alloy Comp. 487(1–2), 550–555 (2009). https://doi.org/10.1016/j.jallcom.2009.08.012

    Article  CAS  Google Scholar 

  28. A. Kosuga, Y. Isse, Y. Wang, K. Koumoto, R. Funahashi, High-temperature thermoelectric properties of Ca0.9–xSrxYb0.1MnO3–δ (0 ≤ x ≤ 0.2). J. Appl. Phys. 105(9), 093717 (2009). https://doi.org/10.1063/1.3125450

    Article  CAS  Google Scholar 

  29. J.S. Revathy, N.S.C. Priya, K. Sandhya, D.N. Rajendran, Structural and optical studies of cerium doped gadolinium oxide phosphor. Bull. Mater. Sci. 44(1), 1 (2021). https://doi.org/10.1007/s12034-020-02299-w

    Article  CAS  Google Scholar 

  30. F.P. Zhang, Q.M. Lu, X. Zhang, J.X. Zhang, First principle investigation of electronic structure of CaMnO thermoelectric compound oxide. J. Alloys Compd. 509, 542–545 (2011). https://doi.org/10.1016/j.jallcom.2010.09.102

    Article  CAS  Google Scholar 

  31. A. Jafari, S.P. Jahromi, K. Boustani, B.T. Goh, N.M. Huang, Evolution of structural and magnetic properties of nickel oxide nanoparticles: influence of annealing ambient and temperature. J. Magn. Magn. Mater. (2018). https://doi.org/10.1016/j.jmmm.2018.08.005

    Article  Google Scholar 

  32. K.R. Nandan, A.R. Kumar, Structural and electrical properties of Ca0.9Dy0.MnO3 prepared by sol-gel technique. J. Mater. Res. Technol. (2019). https://doi.org/10.1016/j.jmrt.2017.05.020

    Article  Google Scholar 

  33. I.N. Qader, M.S. Omar, Carrier concentration effect and other structure-related parameters on lattice thermal conductivity of Si nanowires. Bull. Mater. Sci. 40(3), 599–607 (2017). https://doi.org/10.1007/s12034-017-1393-1

    Article  CAS  Google Scholar 

  34. M.V. Abrashev, J. Bäckström, L. Börjesson, V.N. Popov, R.A. Chakalov, N. Kolev, M.N. Iliev, Raman spectroscopy ofCaMnO3: Mode assignment and relationship between Raman line intensities and structural distortions. Phys. Rev. B (2002). https://doi.org/10.1103/physrevb.65.184301

    Article  Google Scholar 

  35. S. Majumdar, H. Huhtinen, P. Paturi, R. Palai, The effect of oxygen on the Jahn–Teller distortion and magnetization dynamics of Pr0.9Ca0.1MnO3 thin films. J. Phys.: Condens. Matter. 25(6), 066005 (2013). https://doi.org/10.1088/0953-8984/25/6/066005

    Article  CAS  PubMed  Google Scholar 

  36. S. Demirel, E. Oz, S. Altin, A. Bayri, O. Bayri, E. Altin, S. Avci, Structural, magnetic, electrical and electrochemical properties of SrCoO2.5, Sr9Co2Mn5O21 and SrMnO3 compounds. Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.07.230

    Article  Google Scholar 

  37. M.S. Medina, J.C. Bernardi, A. Zenatti, M.T. Escote, A new approach to obtain calcium cobalt oxide by microwave-assisted hydrothermal synthesis. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.09.130

    Article  Google Scholar 

  38. C. Shek, G. Lin, J.K. Lai, Effect of oxygen deficiency on the Raman spectra and hyperfine interactions of nanometer SnO2. Nanostruct. Mater. 11(7), 831–835 (1999). https://doi.org/10.1016/s0965-9773(99)00373-6

    Article  CAS  Google Scholar 

  39. P. Shvets, K. Maksimova, A. Goikhman, Correlation between Raman Spectra and oxygen content in amorphous vanadium oxides. Phys. B: Condens. Matter. 613, 412995 (2021). https://doi.org/10.1016/j.physb.2021.412995

    Article  CAS  Google Scholar 

  40. M.-H. Hong, W. Han, K.-Y. Lee, H.-H. Park, The thermoelectric properties of au nanoparticle-incorporated Al-doped mesoporous ZnO thin films. Royal Soc. Open. Sci. 6(5), 181799 (2019). https://doi.org/10.1098/rsos.181799

    Article  CAS  Google Scholar 

  41. M. Du Plessis, Relationship between specific surface area and pore dimension of high porosity nanoporous silicon - model and experiment. Phys. Status Solidi (a). 204(7), 2319–2328 (2007). https://doi.org/10.1002/pssa.200622237]

    Article  CAS  Google Scholar 

  42. C.-S. Park, M.-H. Hong, S. Shin, H.H. Cho, H.-H. Park, Synthesis of mesoporous La0.7Sr0.3MnO3 thin films for thermoelectric materials. J. Alloys Compd. 632, 246250 (2015). https://doi.org/10.1016/j.jallcom.2015.01.188

    Article  CAS  Google Scholar 

  43. B. Fang, N. Jiang, C. Ding, Q. Du, J. Ding, Decrease of sintering temperature by CuO doping of the pb 0.8(Mg1/3Nb2/3)O3 – 0.2PbTiO3 ceramics prepared by reaction-sintering method. Phys. Status Solidi (a). 209(2), 254–261 (2011). https://doi.org/10.1002/pssa.201127486]

    Article  Google Scholar 

  44. P.T. Phong, S.J. Jang, B.T. Huy, Y.-I. Lee, I.-J. Lee, Structural, magnetic, infrared and Raman studies of La0.8SrxCa0.2–xMnO3 (0 ≤ x ≤ 0.2). J. Mater. Sci.: Mater. Electron. 24(7), 2292–2301 (2013). https://doi.org/10.1007/s10854-013-1092-7

    Article  CAS  Google Scholar 

  45. A. Harbi, H. Moutaabbid, Y. Li, C. Renero-Lecuna, M. Fialin et al., The effect of cation disorder on magnetic properties of new double perovskites La2NiCo1 – xMnO6 (x = 0.2–0.8). J. Alloys Compd. 778, 105–114 (2019). https://doi.org/10.1016/j.jallcom.2018.10.360ff

    Article  CAS  Google Scholar 

  46. C. Nunes, P. Mácová, D. Frankeová, R. Ševčík, A. Viani, Influence of linseed oil on the microstructure and composition of lime and lime-metakaolin pastes after a long curing time. Constr. Build. Mater. 189, 787–796 (2018). https://doi.org/10.1016/j.conbuildmat.2018.09.054

    Article  CAS  Google Scholar 

  47. G.E. Sheela, D. Manimaran, I. Hubert Joe, S. Rahim, V.B. Jothy, Structure and nonlinear optical property analysis of l-Methioninium oxalate: a DFT approach. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 143, 40–48 (2015). https://doi.org/10.1016/j.saa.2015.02.038

    Article  CAS  Google Scholar 

  48. N.F. Mott, R.W. Gurney, Electronic Processes in Ionic Crystals (Oxford Univ. Press, London, 1940)

    Google Scholar 

  49. J.B. Coulter, D.P. Birnie, Assessing Tauc plot slope quantification: ZnO thin films as a model system. Phys. Status Solidi (2017). https://doi.org/10.1002/pssb.201700393

    Article  Google Scholar 

  50. N. Thangavel, S. Kumaran, Thermoelectric properties of Cu2Se compound fabricated at Low-Temperature Combustion Synthesis as a New Approach with alternative technique. J. Electron. Mater. 52, 2168–2176 (2023). https://doi.org/10.1007/s11664-022-10196-7

    Article  CAS  Google Scholar 

  51. G. XU, High-temperature transport properties of Nb and Ta substituted CaMnO3 system. Solid State Ionics. 171(1–2), 147–151 (2004). https://doi.org/10.1016/s0167-2738(03)00108-5

    Article  CAS  Google Scholar 

  52. M. Molinari, D.A. Tompsett, S.C. Parker, F. Azough, R. Freer, Structural, electronic and thermoelectric behaviour of CaMnO3 and CaMnO(3–δ). J. Mater. Chem. A 2(34), 14109–14117 (2014). https://doi.org/10.1039/c4ta01514b

    Article  CAS  Google Scholar 

  53. A. Nurhayati, K. Venkataramana, N. Modem, C.V. Reddy, Effects of different sintering methods on the Structural and Electrical properties of Ca0.9Sr0.1MnO3. Ceram. Int. 47(19), 26822–26828 (2021). https://doi.org/10.1016/j.ceramint.2021.06.090

    Article  CAS  Google Scholar 

  54. S.K. Abbas, S. Atiq, S. Riaz, S. Naseem, Thermally activated variations in conductivity and activation energy in SrMnO3. J. Mater. Sci.: Mater. Electron. 28(10), 7171–7176 (2017). https://doi.org/10.1007/s10854-017-6397-5

    Article  CAS  Google Scholar 

  55. S. Berbeth Mary, K. Nalini, K. Rajalakshmi, Synthesis, characterization and thermoelectric properties of ca substituted Nanostructured SrMnO3 by Sol-gel hydrothermal method. Mater. Today: Proced. 57, 2344–2349 (2022). https://doi.org/10.1016/j.matpr.2022.01.273

    Article  CAS  Google Scholar 

  56. H.-W. Deng, D.-H. Chen, Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid. Chin. Phys. B (2022). https://doi.org/10.1088/1674-1056/ac5399

    Article  Google Scholar 

  57. G. Jayakumar, D.S. Poomagal, A. Irudayaraj, A. Dhayal Raj, A.K. Thresa, S., P. Akshadha, Study on structural, magnetic and electrical properties of perovskite lanthanum strontium manganite nanoparticles. J. Mater. Sci.: Mater. Electron. 31(23), 20945–20953 (2020). https://doi.org/10.1007/s10854-020-04608-9

    Article  CAS  Google Scholar 

  58. S.B. Mary, A.L. Rajesh, Influence of trivalent lanthanides substitution on the thermoelectric properties of nanostructured Ca1 – xLnx3+MnO3–δ (Ln3 + = sm, ce, La; x = 0, 0.1). J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03205-0

    Article  Google Scholar 

  59. J.C. Diez, M.A. Torres, S. Rasekh, G. Constantinescu, M.A. Madre, A. Sotelo, Enhancement of Ca3Co4O9 thermoelectric properties by Cr for Co substitution. Ceram. Int. 39(6), 6051–6056 (2013). https://doi.org/10.1016/j.ceramint.2013.01.021

    Article  CAS  Google Scholar 

  60. S. Natkrita Prasoetsopha, Pinitsoontorn, V. Amornkitbamrung, High temperature Thermoelectric and Optical properties of Ca3Co4O9 prepared by Thermal Hydro-Decomposition. Chiang Mai J. Sci. 40(6), 1030–1034 (2013)

    Google Scholar 

  61. N.V. Nong, C.-J. Liu, M. Ohtaki, High-temperature thermoelectric properties of late rare earth-doped Ca3Co4O9+δ. J. Alloys Compd. 509(3), 977–981 (2011). https://doi.org/10.1016/j.jallcom.2010.09.150

    Article  CAS  Google Scholar 

  62. F. Delorme, C.F. Martin, P. Marudhachalam, D. Ovono Ovono, G. Guzman, Effect of ca substitution by Sr on the thermoelectric properties of Ca3Co4O9 ceramics. J. Alloys Compd. 509(5), 2311–2315 (2011). https://doi.org/10.1016/j.jallcom.2010.10.209

    Article  CAS  Google Scholar 

  63. B.S.N. Rao, A., P, P., Tarachand, G.S. Okram, Investigation on structural, electrical, magnetic and thermoelectric properties of low bandwidth sm 1–xSrxMnO3 (0.2 ≤ x ≤ 0.5) manganites. Phys. B: Condens. Matter. 523, 67–77 (2017). https://doi.org/10.1016/j.physb.2017.08.027

    Article  CAS  Google Scholar 

  64. M. Takashiri, T. Shirakawa, K. Miyazaki, H. Tsukamoto, Trans. Jpn Soc. Mech. Eng. Ser. A 72, 1793 (2006)

    Article  CAS  Google Scholar 

  65. S. Berbeth Mary, A. Leo Rajesh, Electrical and thermoelectric properties of surfactant assisted calcium cobalt oxide nanoparticles. J. Mater. Sci: Mater. Electron. 33, 9289–9300 (2022). https://doi.org/10.1007/s10854-021-07285-4

    Article  CAS  Google Scholar 

  66. G. Zhang, X. Dong, Z. Liu, W. Zhou, Z. Shao, W. Jin, Cobalt-site cerium doped SmxSr1–xCoO3–δ oxides as potential cathode materialsfor solid-oxide fuel cells. J. Power Sources. 195, 3386–3393 (2010). https://doi.org/10.1016/j.jpowsour.2009.12.039

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (Dr. S. Berbeth Mary) would like to thank UGC-DAE Consortium for Scientific Research, Indore for providing the opportunity to use the research facilities at this Centre.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptual study of this research article. Material preparation, data collection and analysis were performed by Dr. S. Berbeth Mary, Dr. K.S. Mohan. The first draft of the manuscript was written by Dr. S. Berbeth Mary and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.Dr. M. MuthuKrishnan contributed to finding the oxygen stoichiometry and also to answering the queries of reviewers.

Corresponding author

Correspondence to S. Berbeth Mary.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mary, S.B., Mohan, K.S. & Krishnan, M.M. Effect of A-site and B-site ion substitution on the electrical and thermoelectric properties of nanostructured perovskite CaMnO3. J Mater Sci: Mater Electron 35, 600 (2024). https://doi.org/10.1007/s10854-024-12351-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12351-8

Navigation