Skip to main content
Log in

Phase conversions in calcium manganites with changing Ca/Mn ratios and their influence on the electrical transport properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The phase-interconversions between the spinel-, brownmillerite-, defect rocksalt and perovskite-type structures have been investigated by way of (i) introducing deficiency in A-sites in CaxMn2−xO3 (0.05 ≤ × ≤ 1) i.e., by varying Ca/Mn ratio from 0.025 to 1 and (ii) nonstoichiometric CaMnO3−δ (CMO) with 0.02 ≤ δ ≤ 1. The temperature dependence of resistivity (ρ–T) have been investigated on nonstoichiometric CaMnO3−δ (undoped) as well as the CMO substituted with donor impurities such as La3+, Y3+, Bi3+ or acceptor such as Na1+ ion at the Ca-site. The ρ–T characteristics of nonstoichiometric CaMnO3−δ is strongly influenced by oxygen deficiency, which controls the concentration of Mn3+ ions and, in turn, affects the resistivity, ρ. The results indicated that the substitution of aliovalent impurities at Ca-site in CaMnO3 has similar effects as of CaMnO3−δ (undoped) annealed in atmospheres of varying partial pressures whereby electron or hole concentration can be altered, yet the doped samples can be processed in air or atmospheres of higher \( P_{{{\text{O}}_{ 2} }} \). The charge transport mechanisms of nonstoichiometric CaMnO3−δ as against the donor or acceptor doped CaMnO3 (sintered in air, \( P_{{{\text{O}}_{ 2} }} \) ~ 0.2 atm) have been predicted. The ρ (T) curves of both donor doped CaMnO3 as well as non-stoichiometric CaMnO3−δ, is predictable by the small polaron hopping (SPH) model, which changes to the variable range hopping (VRH) at low temperatures whereas the acceptor doped CaMnO3 exhibited an activated semiconducting hopping (ASH) throughout the measured range of temperature (10–500 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Tokura, Rep. Prog. Phys. 69, 3–797 (2006). doi:10.1088/0034-4885/69/3/R06

    Article  Google Scholar 

  2. J.H. Van Santen, G.H. Jonker, Physica 16, 599 (1950). doi:10.1016/0031-8914(50)90104-2

    Article  ADS  Google Scholar 

  3. G.H. Jonker, J.H. Van Santen, Physica 16, 337 (1950). doi:10.1016/0031-8914(50)90033-4

    Article  ADS  CAS  Google Scholar 

  4. K.H. Kim, M. Uehara, V. Kiryukhin et al., Colossal Magnetoresistive Manganites (2004), p. 131

  5. H.R. Krishnamurthy, Pramana 64, 6–1063 (2005). doi:10.1007/BF02704168

    Article  Google Scholar 

  6. Y.D. Tretyakov, E.A. Goodilin, Pure Appl. Chem. 76(9), 1749 (2004). doi:10.1351/pac200476091749

    Article  CAS  Google Scholar 

  7. H. Taguchi, M. Shimada, M. Koizumi, J. Solid State Chem. 29, 221 (1979). doi:10.1016/0022-4596(79)90227-5

    Article  ADS  CAS  Google Scholar 

  8. J. Briatico, B. Alascio, R. Allub, Phys. Rev. B 53, 14020 (1996). doi:10.1103/PhysRevB.53.14020

    Article  ADS  CAS  Google Scholar 

  9. A. Reller, D.A. Jefferson, J.M. Thomas et al., J. Phys. Chem. 87, 913 (1983). doi:10.1021/j100229a005

    Article  CAS  Google Scholar 

  10. K. Takahashi, H. Yamamura, K. Muramatsu et al., Bull. Chem. Soc. Jpn. 55, 619 (1982). doi:10.1246/bcsj.55.619

    Article  CAS  Google Scholar 

  11. C.C.K. Chiang, K.R. Poeppelmeier, Mater. Lett. 12, 102 (1991). doi:10.1016/0167-577X(91)90066-F

    Article  CAS  Google Scholar 

  12. E.O. Wollan, W.C. Koehler, Phys. Rev. 100, 2–545 (1955). doi:10.1103/PhysRev.100.545

    Article  Google Scholar 

  13. J.B. Macchesney, H.J. Williams, J.F. Patter, et al., in Phys. Rev. B. (1967), p. 779

  14. J.B. Goodenough, Phys. Rev. 100, 2–564 (1955). doi:10.1103/PhysRev.100.564

    Article  Google Scholar 

  15. H. Taguchi, Phys. Status Solidi A Appl. Res. 88, K79 (1985). doi:10.1002/pssa.2210880164

    Article  CAS  Google Scholar 

  16. Z. Zeng, M. Greenblatt, M. Croft., Phys. Rev. B 59(13), 8784 (1999). doi:10.1103/PhysRevB.59.8784

    Google Scholar 

  17. A. Maignan, M. Martin, M. Hervieu, Solid State Commun. 117, 377 (2001). doi:10.1016/S0038-1098(00)00482-8

    Article  ADS  CAS  Google Scholar 

  18. A. Maignan, M. Martin, C. Autret et al., J. Mater. Chem. 12, 1806 (2002). doi:10.1039/b200495j

    Article  CAS  Google Scholar 

  19. B. Raveau, Y.M. Zhao, C. Martin et al., J. Solid State Chem. 149, 203 (2000). doi:10.1006/jssc.1999.8517

    Article  ADS  CAS  Google Scholar 

  20. B. Raveau, A. Maignan, C. Martin et al., Mater. Res. Bull. 35, 1579 (2000). doi:10.1016/S0025-5408(00)00373-1

    Article  CAS  Google Scholar 

  21. A.P. Ramirez, J. Phys. Condens. Matter 9, 9171 (1997)

    Google Scholar 

  22. A. Maignan, C. Martin, F. Damay et al., Phys. Rev. B. 58, 2758 (1998). doi:10.1103/PhysRevB.58.2758

    Article  CAS  Google Scholar 

  23. I. Funahashi, J. Matsubra, Mater. Res. 17, 5–1092 (2002). doi:10.1557/JMR.2002.0161

    Article  Google Scholar 

  24. M. Ohtaki, H. Koga, T. Tokunaga, J. Solid State Chem. 120, 105 (1995). doi:10.1006/jssc.1995.1384

    Article  ADS  CAS  Google Scholar 

  25. H. Aliaga, M.T. Causa, B. Alascio, J. Magn. Magn. Mater. 226230, 791 (2001). doi:10.1016/S0304-8853(00)01397-4

    Article  Google Scholar 

  26. J. Philip, T.R.N. Kutty, J. Phys. Condens. Matter 11, 8537 (1999). doi:10.1088/0953-8984/11/43/317

    Article  CAS  Google Scholar 

  27. J. Philip, T.R.N. Kutty, Mater. Chem. Phys. 63, 218 (2000). doi:10.1016/S0254-0584(99)00223-0

    Article  CAS  Google Scholar 

  28. J.C. Grenier, M. Pouchard, P. Hagenmuller, Struct. Bond. 47, 1 (1981)

    CAS  Google Scholar 

  29. K.R. Poeppelmeier, M.E. Leonowicz, J.M. Longo, J. Solid State Chem. 44, 89 (1982). doi:10.1016/0022-4596(82)90404-2

    Article  ADS  CAS  Google Scholar 

  30. S. Komorsnicki, J.C. Grenier, M. Pouchard et al., J. Nuovo. Chim. 5, 161 (1981)

    Google Scholar 

  31. A. Reller, D.A. Jefferson, J.M. Thomas, Proc. R. Soc. A 394, 223 (1984). doi:10.1098/rspa.1984.0077

    Article  ADS  CAS  Google Scholar 

  32. J. Berggren, Acta Chem. Scand. A. 25, 3616 (1977)

    Article  Google Scholar 

  33. K. Vidyasagar, A. Reller, J. Gopalakrishnan et al., J. Chem. Soc. Chem. Commun. 336 (1986)

  34. D. Emin, T. Holstein, Ann. Phys. 53, 439 (1969). doi:10.1016/0003-4916(69)90034-7

    Article  ADS  Google Scholar 

  35. R. Von Helmolt, J. Weeks, K. Samwer et al., J. Appl. Phys. 76, 6925 (1994)

  36. Y. Hongsuk, N.H. Hur, J. Yu, J. Phys. Condens. Matter 12, 5453 (2000)

    Google Scholar 

  37. C. Klingsberg, R. Roy, J. Amer. Ceram. Soc. 43, 620 (1960)

    Google Scholar 

  38. J.B. Goodenough, J. Appl. Phys. 37, 1415 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. N. Kutty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijayanandhini, K., Kutty, T.R.N. Phase conversions in calcium manganites with changing Ca/Mn ratios and their influence on the electrical transport properties. J Mater Sci: Mater Electron 20, 445–454 (2009). https://doi.org/10.1007/s10854-008-9749-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9749-3

Keywords

Navigation