Skip to main content
Log in

Effect of sputtering time and calcination temperature duration on the structural, optical, and magnetic properties of DC sputtered SrM films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Strontium ferrite (SrFe\(_{12}\)O\(_{19}\)) films on alumina substrate were prepared using DC sputtering technique. The SrFe\(_{12}\)O\(_{19}\) hexaferrite target was sputtered at 100-watt power at a 24 sccm flow rate of argon gas on the alumina substrates. A series of films were prepared with different sputtering times and calcination temperature durations in the form of Series B, and Series E. The structural, morphological, optical, and magnetic properties of prepared SrM films were investigated at room temperature using FTIR, XRD, SEM, EDS, UV–Vis, Raman, and VSM measurements, respectively. The XRD analysis revealed the formation of the M-phase (hexagonal) along with the peaks corresponding to the alumina substrate. The film samples exhibited morphology with interconnected grains, which have a structure similar to porous fiber. The UV–VIS spectra show a sharp rise from 400 nm giving rise to bandgap, a red shift is observed with calcination duration. Raman spectra of all film samples showed nine Raman-active modes: \(4A_{1\text {g}}\) and \(3E_{1\text {g}}\) and \(2E_{2\text {g}}\). M–H loops analysis was carried out of the films for both in-plane and out-of-plane orientation of the films. M\(_s\) and H\(_c\) values varied for both the series B and E with thickness and calcination time. The resulting films show good magnetic properties, which makes them appropriate for utilisation in various applications like data storage, EMI shielding, and optoelectronic applications, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. G.D. Soria, J.F. Marco, A. Mandziak, S. Sánchez-Cortés, M. Sánchez-Arenillas, J.E. Prieto, J. Dávalos, M. Foerster, L. Aballe, J. López-Sánchez, J.C. Guzmán-Mínguez, C. Granados-Miralles, J. Figuera, A. Quesada, Influence of the growth conditions on the magnetism of SrFe\(_{12}\)O\(_{19}\) thin films and the behavior of Co/SrFe\(_{12}\)O\(_{19}\) bilayers. J. Phys. D 53(34), 344002 (2020). https://doi.org/10.1088/1361-6463/ab8d70

    Article  CAS  Google Scholar 

  2. K. Strnat, G. Hoffer, J. Olson, W. Ostertag, J.J. Becker, A family of new cobalt-base permanent magnet materials. J. Appl. Phys. 38(3), 1001–1002 (1967). https://doi.org/10.1063/1.1709459

    Article  CAS  Google Scholar 

  3. K.J. Strnat, Chapter 2 rare earth-cobalt permanent magnets, in Handbook of Ferromagnetic Materials (Elsevier, 1988), pp. 131–209. https://doi.org/10.1016/s1574-9304(05)80077-x

  4. B. Sprecher, Y. Xiao, A. Walton, J. Speight, R. Harris, R. Kleijn, G. Visser, G.J. Kramer, Life cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnets. Environ. Sci. Technol. 48(7), 3951–3958 (2014). https://doi.org/10.1021/es404596q

    Article  CAS  PubMed  Google Scholar 

  5. T.-S. Chin, Permanent magnet films for applications in microelectromechanical systems. J. Magn. Magn. Mater. 209(1–3), 75–79 (2000). https://doi.org/10.1016/s0304-8853(99)00649-6

    Article  CAS  Google Scholar 

  6. E.W. Gorter, Saturation magnetization of some ferrimagnetic oxides with hexagonal crystal structures. Proc. IEE B Radio Electron. Eng. 104(5S), 255–260 (1957). https://doi.org/10.1049/pi-b-1.1957.0042

    Article  Google Scholar 

  7. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57(7), 1191–1334 (2012). https://doi.org/10.1016/j.pmatsci.2012.04.001. (cited By 1696)

    Article  CAS  Google Scholar 

  8. M.M. Hessien, M.M. Rashad, K. El-Barawy, Controlling the composition and magnetic properties of strontium hexaferrite synthesized by co-precipitation method. J. Magn. Magn. Mater. 320(3–4), 336–343 (2008). https://doi.org/10.1016/j.jmmm.2007.06.009

    Article  CAS  Google Scholar 

  9. G.D. Soria, P. Jenus, J.F. Marco, A. Mandziak, M. Sanchez-Arenillas, F. Moutinho, J.E. Prieto, P. Prieto, J. Cerda, C. Tejera-Centeno, S. Gallego, M. Foerster, L. Aballe, M. Valvidares, H.B. Vasili, E. Pereiro, A. Quesada, J. Figuera, Strontium hexaferrite platelets: a comprehensive soft X-ray absorption and Mossbauer spectroscopy study. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-48010-w

    Article  PubMed  PubMed Central  Google Scholar 

  10. A. Ghasemi, A. Morisako, Static and high frequency magnetic properties of Mn-Co-Zr substituted Ba-ferrite. J. Alloys Compd. 456(1–2), 485–491 (2008). https://doi.org/10.1016/j.jallcom.2007.02.101

    Article  CAS  Google Scholar 

  11. S.M. Masoudpanah, S.A.S. Ebrahimi, Synthesis and characterization of nanostructured strontium hexaferrite thin films by the sol-gel method. J. Magn. Magn. Mater. 324(14), 2239–2244 (2012). https://doi.org/10.1016/j.jmmm.2012.02.109

    Article  CAS  Google Scholar 

  12. N. Matsushita, M. Ichinose, S. Nakagawa, M. Naoe, Preparation and characteristics of Co-Zn ferrite rigid disks without protective layers for high density recording. IEEE Trans. Magn. 34(4), 1639–1641 (1998). https://doi.org/10.1109/20.706641

    Article  CAS  Google Scholar 

  13. Y. Slimani, M.A. Almessiere, D.S. Klygach, A. Baykal, T.I. Zubar, S.V. Trukhanov, S. Caliskan, A.V. Trukhanov, M. Amir, Structural, magnetic, and microwave features of Sc3+ ions substituted Sr0.5Ba0.5Fe12O19 nanohexaferrites. J. Alloys Compd. 976, 173138 (2024). https://doi.org/10.1016/j.jallcom.2023.173138

    Article  CAS  Google Scholar 

  14. M.S. Yuan, H.L. Glass, L.R. Adkins, Epitaxial barium hexaferrite on sapphire by sputter deposition. Appl. Phys. Lett. 53(4), 340–341 (1988). https://doi.org/10.1063/1.100601

    Article  CAS  Google Scholar 

  15. J.D. Adam, S.V. Krishnaswamy, S.H. Talisa, K.C. Yoo, Thin-film ferrites for microwave and millimeter-wave applications. J. Magn. Magn. Mater. 83(1–3), 419–424 (1990). https://doi.org/10.1016/0304-8853(90)90570-g

    Article  CAS  Google Scholar 

  16. M. Matsumoto, A. Morisako, T. Haeiwa, K. Naruse, T. Karasawa, Ba-ferrite films prepared by sol-gel pyrolysis method. IEEE Transl. J. Magn. Jpn. 6(8), 648–653 (1991). https://doi.org/10.1109/tjmj.1991.4565229

    Article  Google Scholar 

  17. E. Fujii, H. Torii, M. Aoki, Preparation of spinel ferrite thin films by plasma assisted MO-CVD. IEEE Transl. J. Magn. Jpn. 4(8), 512–517 (1989). https://doi.org/10.1109/tjmj.1989.4564041

    Article  Google Scholar 

  18. C.A. Carosella, D.B. Chrisey, P. Lubitz, J.S. Horwitz, P. Dorsey, R. Seed, C. Vittoria, Pulsed laser deposition of epitaxial BaFe\(_{12}\)O\(_{19}\) thin films. J. Appl. Phys. 71(10), 5107–5110 (1992). https://doi.org/10.1063/1.350614

    Article  CAS  Google Scholar 

  19. P.C. Dorsey, S.E. Bushnell, R.G. Seed, C. Vittoria, Epitaxial yttrium iron garnet films grown by pulsed laser deposition. J. Appl. Phys. 74(2), 1242–1246 (1993). https://doi.org/10.1063/1.354927

    Article  CAS  Google Scholar 

  20. A. Lisfi, M. Guyot, R. Krishnan, M. Porte, P. Rougier, V. Cagan, Microstructure and magnetic properties of spinel and hexagonal ferrimagnetic films prepared by pulsed laser deposition. J. Magn. Magn. Mater. 157–158, 258–259 (1996). https://doi.org/10.1016/0304-8853(95)01246-x

    Article  Google Scholar 

  21. M. Mohebbi, K. Ebnabbasi, C. Vittoria, First observation of magnetoelectric effect in M-type hexaferrite thin films. J. Appl. Phys. (2013). https://doi.org/10.1063/1.4795721

    Article  Google Scholar 

  22. S. Anjum, M.S. Rafique, M. Khaleeq-ur-Rahman, K. Siraj, A. Usman, S.I. Hussain, S. Naseem, Investigation of induced parallel magnetic anisotropy at low deposition temperature in Ba-hexaferrites thin films. J. Magn. Magn. Mater. 324(5), 711–716 (2012). https://doi.org/10.1016/j.jmmm.2011.08.059

    Article  CAS  Google Scholar 

  23. J. Liu, Z. Dong, Z. Zhang, R. Sun, M. Chen, H. Wang, Z. Zhang, M. Zhang, X. Jia, C. Zhi, The SiO2 on the surface of BaFe12O19 to prepare flexible films with excellent microwave absorption properties. J. Market. Res. 21, 4674–4687 (2022). https://doi.org/10.1016/j.jmrt.2022.11.019

    Article  CAS  Google Scholar 

  24. F. Wang, D. Zhang, Y. Zhang, H. Li, S. Yang, Q. Yang, H. Zhang, Effect of annealing temperature on the properties of BaFe12O19 thin films deposited on GGG (111) substrates by pulsed laser deposition. J. Magn. Magn. Mater. 580, 170915 (2023). https://doi.org/10.1016/j.jmmm.2023.170915

    Article  CAS  Google Scholar 

  25. L.V. Saraf, S.E. Lofland, A.V. Cresce, S.M. Bhagat, R. Ramesh, Structural and ferromagnetic resonance characteristics of BaFe12O19 films with minimal linewidths. Appl. Phys. Lett. 79(3), 385–387 (2001). https://doi.org/10.1063/1.1385348

    Article  CAS  Google Scholar 

  26. H. Köçkar, N. Kaplan, Single crystal martensitic phase of structural properties-related magnetic behaviour of FeCrNi thin films: in-plane magnetic anisotropy under different substrate rotation speeds. J. Mater. Sci.: Mater. Electron. 31(15), 12823–12829 (2020). https://doi.org/10.1007/s10854-020-03835-4

    Article  CAS  Google Scholar 

  27. M.M. Haque, M. Huq, M.A. Hakim, Densification, magnetic and dielectric behaviour of Cu-substituted Mg-Zn ferrites. Mater. Chem. Phys. 112(2), 580–586 (2008). https://doi.org/10.1016/j.matchemphys.2008.05.097. (cited By 129)

    Article  CAS  Google Scholar 

  28. Coates, J. (2006). Interpretation of infrared spectra, a practical approach. in Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers, M.L. McKelvy. https://doi.org/10.1002/9780470027318.a5606J

  29. H. Kojima, Chapter 5 fundamental properties of hexagonal ferrites with magnetoplumbite structure, in Handbook of Ferromagnetic Materials, vol. 3 (Elsevier, 1982), pp. 305–391. https://doi.org/10.1016/S1574-9304(05)80091-4

  30. S.K. Godara, Ravleen, B. Kaur, V. Kaur, A. Kumar Sood, P. Singh Malhi, G. Ram Bhadu, I. Pushkarna, M. Singh, Characterization of M-type barium hexaferrite synthesized using potatoes as natural fuel. Mater. Today Proc. 28, 1–3 (2020). https://doi.org/10.1016/j.matpr.2019.12.056. (Cited by 9)

  31. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99(6), 1727–1735 (1955). https://doi.org/10.1103/PhysRev.99.1727. (cited By 1965)

    Article  CAS  Google Scholar 

  32. T. Gupta, C.C. Chauhan, A.R. Kagdi, S.S. Meena, R.B. Jotania, C. Singh, C.B. Basak, Investigation on structural, hysteresis, Mössbauer properties and electrical parameters of lightly erbium substituted X-type Ba\(_2\)Co\(_2\)Er\(_x\)Fe\(_{28-x}\)O\(_{46}\) hexaferrites. Ceram. Int. 46(6), 8209–8226 (2020). https://doi.org/10.1016/j.ceramint.2019.12.049. (cited By 14)

    Article  CAS  Google Scholar 

  33. Y. Zhu, A. Chen, H. Zhou, W. Zhang, J. Narayan, J.L. MacManus-Driscoll, Q. Jia, H. Wang, Research updates: epitaxial strain relaxation and associated interfacial reconstructions: the driving force for creating new structures with integrated functionality. APL Mater. (2013). https://doi.org/10.1063/1.4828936

    Article  Google Scholar 

  34. R.S. Alam, M. Moradi, H. Nikmanesh, J. Ventura, M. Rostami, Magnetic and microwave absorption properties of BaMg\(_{x/2}\)Mn\(_{x/2}\)Co\(_x\)Ti\(_2x\)Fe\(_{12-4x}\)O\(_{19}\) hexaferrite nanoparticles. J. Magn. Magn. Mater. 402, 20–27 (2016). https://doi.org/10.1016/j.jmmm.2015.11.038

    Article  CAS  Google Scholar 

  35. P. Kaur, S.K. Chawla, S.S. Meena, S.M. Yusuf, S.B. Narang, Synthesis of Co-Zr doped nanocrystalline strontium hexaferrites by sol-gel auto-combustion route using sucrose as fuel and study of their structural, magnetic and electrical properties. Ceram. Int. 42(13), 14475–14489 (2016). https://doi.org/10.1016/j.ceramint.2016.06.053

    Article  CAS  Google Scholar 

  36. P.A. Prashanth, R.S. Raveendra, R.H. Krishna, S. Ananda, N.P. Bhagya, B.M. Nagabhushana, K. Lingaraju, H.R. Naika, Synthesis, characterizations, antibacterial and photoluminescence studies of solution combustion-derived \(\alpha \)-Al\(_2\)O\(_3\) nanoparticles. J. Asian Ceram. Soc. 3(3), 345–351 (2015). https://doi.org/10.1016/j.jascer.2015.07.001

    Article  Google Scholar 

  37. R. Dom, P.H. Borse, C.R. Cho, J.S. Lee, S.M. Yu, J.H. Yoon, T.E. Hong, E.D. Jeong, H.G. Kim, Synthesis of SrFe\(_{12}\)O\(_{19}\) and Sr\(_7\)Fe\(_{10}\)O\(_{22}\) systems for visible light photocatalytic studies. J. Ceram. Process. Res. 13(4), 451–456 (2012). (cited By 16)

    Google Scholar 

  38. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Physica Status Solidi (b) 15(2), 627–637 (1966). https://doi.org/10.1002/pssb.19660150224. (cited By 7992)

    Article  CAS  Google Scholar 

  39. M. Khojaste khoo, P. Kameli, Structure and magnetization of strontium hexaferrite (SrFe\(_{12}\)O\(_{19}\)) films prepared by pulsed laser deposition. Front. Mater. (2021). https://doi.org/10.3389/fmats.2021.717251

    Article  Google Scholar 

  40. D. Anadkat, C. Badampudi, A. Gor, A.V. Sanchela, Investigation of frequency dependent dielectric properties of La-doped BaSnO3-ZnSnO3 solid-solutions. J. Alloys Compd. 958, 170350 (2023). https://doi.org/10.1016/j.jallcom.2023.170350

    Article  CAS  Google Scholar 

  41. J. Kreisel, G. Lucazeau, H. Vincent, Raman spectra and vibrational analysis of BaFe\(_{12}\)O\(_{19}\) hexagonal ferrite. J. Solid State Chem. 137(1), 127–137 (1998). https://doi.org/10.1006/jssc.1997.7737

    Article  CAS  Google Scholar 

  42. X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, P.-H. Tan, Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44(9), 2757–2785 (2015). https://doi.org/10.1039/c4cs00282b

    Article  CAS  PubMed  Google Scholar 

  43. Q. Wu, Z. Yu, H. Hao, Y. Chu, H. Xie, The effect of pH value on strontium hexaferrites: microstructure and magnetic properties. J. Mater. Sci.: Mater. Electron. 28(17), 12768–12775 (2017). https://doi.org/10.1007/s10854-017-7104-2

    Article  CAS  Google Scholar 

  44. M. Sivakumar, A. Gedanken, W. Zhong, Y.W. Du, D. Bhattacharya, Y. Yeshurun, I. Felner, Nanophase formation of strontium hexaferrite fine powder by the sonochemical method using Fe(Co)\(_5\). J. Magn. Magn. Mater. 268(1–2), 95–104 (2004). https://doi.org/10.1016/s0304-8853(03)00479-7

    Article  CAS  Google Scholar 

  45. M. Farid, I. Ahmad, G. Murtaza, M. Kanwal, I. Ali, Electric modulus properties of praseodymium substituted copper ferrites. J. Ovonic Res. 12(3), 137–146 (2016)

    CAS  Google Scholar 

  46. P.R. Graves, C. Johnston, J.J. Campaniello, Raman scattering in spinel structure ferrites. Mater. Res. Bull. 23(11), 1651–1660 (1988). https://doi.org/10.1016/0025-5408(88)90255-3

    Article  CAS  Google Scholar 

  47. D. Bersani, P.P. Lottici, A. Montenero, Micro-Raman investigation of iron oxide films and powders produced by sol-gel syntheses. J. Raman Spectrosc. 30(5), 355–360 (1999). https://doi.org/10.1002/(sici)1097-4555(199905)30:5<355::aid-jrs398>3.0.co;2-c}

    Article  CAS  Google Scholar 

  48. A. Ataie, I.R. Harris, C.B. Ponton, Magnetic properties of hydrothermally synthesized strontium hexaferrite as a function of synthesis conditions. J. Mater. Sci. 30(6), 1429–1433 (1995). https://doi.org/10.1007/bf00375243

    Article  CAS  Google Scholar 

  49. Y. Wang, Q. Li, C. Zhang, B. Li, Effect of Fe/Sr mole ratios on the formation and magnetic properties of SrFe\(_{12}\)O\(_{19}\) microtubules prepared by solgel method. J. Magn. Magn. Mater. 321(19), 3368–3372 (2009). https://doi.org/10.1016/j.jmmm.2009.05.066

    Article  CAS  Google Scholar 

  50. J. Burk, I. Drbohlav, Z. Frait, K. Knizek, R. Kuzel, K. Kouril, Oriented SrFe\(_{12}\)O\(_{19}\) thin films prepared by chemical solution deposition. J. Solid State Chem. 184(11), 3085–3094 (2011). https://doi.org/10.1016/j.jssc.2011.09.024

    Article  CAS  Google Scholar 

  51. H. Kojima, Fundamental properties of hexagonal ferrites with magnetoplumbite. Structure 3, 305–391 (1982). https://doi.org/10.1016/S1574-9304(05)80091-4

    Article  Google Scholar 

  52. S.R. Shinde, A.S. Ogale, S.B. Ogale, S. Aggarwal, V. Novikov, E.D. Williams, R. Ramesh, Self-organized pattern formation in the oxidation of supported iron thin films. I. An experimental study. Phys. Rev. B (2001). https://doi.org/10.1103/physrevb.64.035408

    Article  Google Scholar 

  53. E.C. Stoner, E. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 240(826), 599–642 (1948)

    Google Scholar 

  54. A.R. Abuzir, S.A. Salman, Fabrication and micromagnetic modeling of barium hexaferrite thin films by RF magnetron sputtering. Results Phys. 8, 587–591 (2018). https://doi.org/10.1016/j.rinp.2018.01.003

    Article  Google Scholar 

  55. A.V. Singh, B. Khodadadi, J.B. Mohammadi, S. Keshavarz, T. Mewes, D.S. Negi, R. Datta, Z. Galazka, R. Uecker, A. Gupta, Bulk single crystal-like structural and magnetic characteristics of epitaxial spinel ferrite thin films with elimination of antiphase boundaries. Adv. Mater. 29(30), 1701222 (2017). https://doi.org/10.1002/adma.201701222

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C. C. Chauhan is thankful to GUJCOST (GUJCOST/2020-21/879 dated 13th August 2020), Gandhinagar, India for the financial support. R. B. Jotania is grateful to UGC, New Delhi, India for DRS-SAP-Phase-II (F.530/10/DRS/2018 (SAP-I) dated 17th April 2018) and DST, India for DST-FIST (level-I, No. SR/FST/PSI-198/2014) grants.

Funding

Chetna C. Chauhan reports financial support was provided by GUJCOST, Gandhinagar, Gujarat, India. Rajshree B. Jotania reports partial financial support was provided by University Grants Commission, New Delhi, India and department of Science and Technology, India under DRS-SAP (Phase-II) and DST-FIST (level-I) project.

Author information

Authors and Affiliations

Authors

Contributions

Abhishek A. Gor: graphical abstract preparation, samples preparation, characterization, data curation and analysis, software, graphics, original draft preparation, conceptualization. Ankita Singh: characterization, data curation, analysis, graphics, draft reading and modification. Niranjan M. Devashrayee: draft reading, modification, graphics, supervision. Chetna C. Chauhan: samples characterizations, supervisions, graphs modifications, data curation and analysis, draft modifications, conceptualization. Rajshree B. Jotania: data curation, samples characterization, draft reading, writing and modification, final manuscript checking.

Corresponding authors

Correspondence to Abhishek A. Gor or Chetna C. Chauhan.

Ethics declarations

Competing interests 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in present paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gor, A.A., Singh, A., Devashrayee, N.M. et al. Effect of sputtering time and calcination temperature duration on the structural, optical, and magnetic properties of DC sputtered SrM films. J Mater Sci: Mater Electron 35, 584 (2024). https://doi.org/10.1007/s10854-024-12298-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12298-w

Navigation