Skip to main content
Log in

Hierarchical Porous Cu with Trimodal Porosity Produced Through Investment Casting and Dealloying

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

An open cellular lattice structure based on a cubic body diagonal (CBD) topology is fabricated by vacuum-assisted investment casting of Al-33 wt.% Cu eutectic alloy using 3D printed polymer preform with a pore size of a few millimeters. The CBD struts showed lower microhardness (\(\approx \)150 HV) compared to the bulk master alloy (\(\approx \)191 HV) due to the coarser eutectic resulting from very slow cooling rate (0.04\(^{\circ }\)C/s) inside the ceramic mold in the vacuum chamber. The metallic lattice is subsequently dealloyed in NaOH producing a hierarchically porous Cu structure with additional porosity at micro and nanoscales. Optimum dealloyed conditions are found to be 1 M NaOH at 60\(^{\circ }\)C to obtain uniform nanoporous Cu within the Al\(_2\)Cu eutectic lamellae. The morphology of the nanoporous copper ligaments is affected by solution temperature but is less sensitive to its concentration. The depth of dealloying within CBD struts follows a power law scaling with the dealloying duration with an exponent of 0.5. The macroporous, as well as the partially dealloyed hierarchical porous structures exhibit quasi-brittle failure under compression loading with a peak stress of 4 MPa and 1.5 MPa, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.W. Dunlop and P. Fratzl, Annu. Rev. Mater. Res. 40, 1 (2010).

    Article  ADS  CAS  Google Scholar 

  2. M.A. Meyers, P.-Y. Chen, A.Y.-M. Lin, and Y. Seki, Prog. Mater. Sci. 53(1), 1 (2008).

    Article  CAS  Google Scholar 

  3. M.-H. Sun, S.-Z. Huang, L.-H. Chen, Y. Li, X.-Y. Yang, Z.-Y. Yuan, and B.-L. Su, Chem. Soc. Rev. 45(12), 3479 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Y. Ding and J. Erlebacher, J. Am. Chem. Soc. 125(26), 7772 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. T. Juarez, J. Biener, J. Weissmüller, and A.M. Hodge, Adv. Eng. Mater. 19(12), 1700389 (2017).

    Article  Google Scholar 

  6. H. Liu, X. Lu, D. Xiao, M. Zhou, D. Xu, L. Sun, and Y. Song, Anal. Methods 5(22), 6360 (2013).

    Article  CAS  Google Scholar 

  7. G.W. Nyce, J.R. Hayes, A.V. Hamza, and J.H. Satcher, Chem. Mater. 19(3), 344 (2007).

    Article  CAS  Google Scholar 

  8. Z. Qi and J. Weissmuller, ACS Nano 7(7), 5948 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. T. Wada, P.-A. Geslin, and H. Kato, Scr. Mater. 142, 101 (2018).

    Article  CAS  Google Scholar 

  10. M. Vaezi, H. Seitz, and S. Yang, Int. J. Adv. Manuf. Technol. 67, 1721 (2013).

    Article  Google Scholar 

  11. C. Zhu, Z. Qi, V.A. Beck, M. Luneau, J. Lattimer, W. Chen, M.A. Worsley, J. Ye, E.B. Duoss, and C.M. Spadaccini, Sci. Adv. 4(8), 9459 (2018).

    Article  ADS  Google Scholar 

  12. Y. Zhang, X. Sun, N. Nomura, and T. Fujita, Small 15(22), 1805432 (2019).

    Article  Google Scholar 

  13. M.F. Ashby, L.J. Gibson, Press Syndicate of the University of Cambridge, Cambridge, UK, 175–231 (1997)

  14. P.E. Seiler, K. Li, V.S. Deshpande, and N.A.J. Fleck, Appl. Mech. 88(3), 031011 (2021).

    Article  CAS  Google Scholar 

  15. K.R. Mangipudi, E. Epler, and C.A. Volkert, Acta Mater. 119, 115 (2016).

    Article  ADS  CAS  Google Scholar 

  16. K.R. Mangipudi, E. Epler, and C.A. Volkert, Acta Mater. 140, 337 (2017).

    Article  ADS  CAS  Google Scholar 

  17. D. Panda and K.R. Mangipudi, Mater. 22, 101396 (2022).

    CAS  Google Scholar 

  18. D. Panda, I. Mohanty, A. Mandal, and K.R. Mangipudi, Trans. Indian Inst. Met. 76, 411 (2022).

    Article  Google Scholar 

  19. X. Liu, T. Wada, A. Suzuki, N. Takata, M. Kobashi, and M. Kato, Mater. Des 199, 109416 (2021).

    Article  CAS  Google Scholar 

  20. J. Banhart, Prog. Mater. Sci. 46(6), 559 (2001).

    Article  CAS  Google Scholar 

  21. I. Cockerill, Y. Su, S. Sinha, Y.-X. Qin, Y. Zheng, M.L. Young, and D. Zhu, Mater. Sci. Eng. C 110, 110738 (2020).

    Article  CAS  Google Scholar 

  22. V. Carneiro, S. Rawson, H. Puga, J. Meireles, and P. Withers, Addit. Manuf. 33, 101085 (2020).

    CAS  Google Scholar 

  23. V.H. Carneiro, S. Rawson, H. Puga, and P. Withers, Sci. Rep. 11(1), 1 (2021).

    Article  Google Scholar 

  24. F. Gallien, V. Gass, and A. Mortensen, Mater. Des. 215, 110488 (2022).

    Article  CAS  Google Scholar 

  25. K. Shin, K.A. Leach, J.T. Goldbach, D.H. Kim, J.Y. Jho, M. Tuominen, C.J. Hawker, and T.P. Russell, Nano Lett. 2(9), 933 (2002).

    Article  ADS  CAS  Google Scholar 

  26. H. Luo, L. Sun, Y. Lu, and Y. Yan, Langmuir 20(23), 10218 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. P. Jiang, J. Cizeron, J.F. Bertone, and V.L. Colvin, J. Am. Chem. Soc. 121(34), 7957 (1999).

    Article  CAS  Google Scholar 

  28. Y. Ding, Y.-J. Kim, and J. Erlebacher, J. Adv. Mater. 16(21), 1897 (2004).

    Article  CAS  Google Scholar 

  29. L.-H. Qian, Y. Ding, T. Fujita, and M.-W. Chen, Langmuir 24(9), 4426 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. J. Biener, A.M. Hodge, J.R. Hayes, C.A. Volkert, L.A. Zepeda-Ruiz, A.V. Hamza, and F.F. Abraham, Nano Lett. 6(10), 2379 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Q. Kong, W. Feng, C. Sun, Y. Liu, and L. Lian, J. Porous Mater. 25, 555 (2018).

    Article  CAS  Google Scholar 

  32. T. Song, Y. Gao, Z. Zhang, and Q. Zhai, CrystEngComm 13(23), 7058 (2011).

    Article  CAS  Google Scholar 

  33. C. Zhang, J. Sun, J. Xu, X. Wang, H. Ji, C. Zhao, and Z. Zhang, Electrochim. Acta 63, 302 (2012).

    Article  CAS  Google Scholar 

  34. J.R. Hayes, A.M. Hodge, J. Biener, A.V. Hamza, and K. Sieradzki, J. Mater. Res. 21(10), 2611 (2006).

    Article  ADS  CAS  Google Scholar 

  35. L.-Y. Chen, J.-S. Yu, T. Fujita, and M.-W. Chen, Adv. Funct. Mater. 19(8), 1221 (2009).

    Article  CAS  Google Scholar 

  36. Z. Qi, C. Zhao, X. Wang, J. Lin, W. Shao, Z. Zhang, and X. Bian, J. Phys. Chem. C 113(16), 6694 (2009).

    Article  CAS  Google Scholar 

  37. Y. Xing, S. Wang, B. Fang, S. Zhang, and W. Liu, Int. J. Electrochem. Sci. 10(6), 4849 (2015).

    Article  CAS  Google Scholar 

  38. J. Vargas-Martínez, J. Estela-García, O. Suárez, and C. Vega, Metals 8(6), 378 (2018).

    Article  Google Scholar 

  39. H. Ma, B. Zhao, K. Ding, Y. Zhang, G. Wu, and Y. Gao, J. Mater. Res. 35(19), 2610 (2020).

    Article  ADS  CAS  Google Scholar 

  40. K. Rakesh, Fabrication of nanoporous copper and tuning of nanoporosity to obtain uniform nanoporous structure. Bachelor’s thesis, IIT Bhubaneswar, Arugul (2019)

  41. S.S. Nath, Hierarchical porous structure through investment casting and dealloying. Master’s thesis, IIT Bhubaneswar, Arugul (2020)

  42. Y.-R. Su, T.-H. Wu, and I.-C. Cheng, J. Phys. Chem. Solids 151, 109915 (2021).

    Article  CAS  Google Scholar 

  43. Y. Ramreddy, Development of hierarchical porous aluminum foams and lattices by investment casting and dealloying. Master’s thesis, IIT Bhubaneswar, Arugul (2022)

  44. R. Kakitani, G.L. Gouveia, A. Garcia, N. Cheung, and J.E. Spinelli, J. Therm. Anal. Calorim. 137(3), 983 (2019).

    Article  CAS  Google Scholar 

  45. M. Gündüz and E. Çadırlı, Mater. Sci. Eng. A 327(2), 167 (2002).

    Article  Google Scholar 

  46. E. Çadırlı, U. Büyük, S. Engin, and H. Kaya, J. Alloys Compd. 694, 471 (2017).

    Article  Google Scholar 

  47. Ü. Bayram and N. Maraşlı, Metall Mater. Trans. 49, 3293 (2018).

    Article  CAS  Google Scholar 

  48. C.T. Richard and T.-H. Kwok, Mater. 14(17), 4867 (2021).

    Article  CAS  Google Scholar 

  49. A.E. Ares, S.F. Gueijman, and C.E. Schvezov, J. Cryst. Growth 312(14), 2154 (2010).

    Article  ADS  CAS  Google Scholar 

  50. J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, Nature 410(6827), 450 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. J. Weissmüller, R.C. Newman, H.-J. Jin, A.M. Hodge, and J.W. Kysar, Mrs Bull. 34(8), 577 (2009).

    Article  Google Scholar 

  52. L. Qian and M. Chen, Appl. Phys. Lett. 91(8), 083105 (2007).

    Article  ADS  Google Scholar 

  53. J. Li, H. Jiang, N. Yu, C. Xu, and H. Geng, Corros. Sci. 90, 216 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

KRM and AM acknowledge funding from the SERB, Department of Science and Technology, India under Grant CRG/2018/004005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kodanda Ram Mangipudi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, D., Yara, R., Nath, S.S. et al. Hierarchical Porous Cu with Trimodal Porosity Produced Through Investment Casting and Dealloying. JOM 76, 1680–1689 (2024). https://doi.org/10.1007/s11837-024-06375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06375-y

Navigation