Skip to main content

Advertisement

Log in

Semiconducting-metallic phase transition with tunable optoelectronics and mechanical properties of halide perovskites TlGeX3 (X = F, Cl) under pressure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We explored the mechanical, elastic, electronic, and optical properties of the thallium-based perovskite of TlGeX3 (X = F, Cl) using first-principles calculations within the framework of density functional theory under various hydrostatic pressures up to 25 GPa. The thermodynamic and mechanical stability of these perovskites was investigated using the formation energy and elastic constants, and the results show that the perovskites are stables and ductiles. Furthermore, the band calculations show that all perovskites are semiconductors with a band gap of 1.66 and 0.81 eV for TlGeF3 and TGeCl3, respectively, at 0 GPa. In addition, we explored the essential optical properties of the cubic perovskites TlGeX3 (X = F, Cl) in detail under different hydrostatic pressure values from 0 to 25 GPa, including optical absorption, reflectivity, refractive index, and imaginary and real parts of dielectric functions. The calculations show that the Bulk modulus B, Shear modulus G, Young’s modulus E and the elastic constants (C11 and C12) increase with the pressure, indicating that applying hydrostatic pressure improves the hardness of perovskites TlGeX3 (X = F, Cl). Our findings imply that these perovskites show high absorption and transition in nature from semiconductor-to-metal in the perovskites TlGeF3 and TlGeCl3, making them as a promising candidates for solar cells, ultraviolet absorbers, and optoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that supports the findings of this study is available from the corresponding author upon reasonable request.

References

  1. Y. Cai, J. Cui, M. Chen, M. Zhang, Y. Han, F. Qian, H. Zhao, S. Yang, Z. Yang, H. Bian, T. Wang, K. Guo, M. Cai, S. Dai, Z. Liu, S. Liu, Adv. Funct. Mater. 31, 2005776 (2021)

    Article  CAS  Google Scholar 

  2. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Article  CAS  Google Scholar 

  3. I. Mathews, S.N. Kantareddy, T. Buonassisi, I.M. Peters, Joule 3, 1415 (2019)

    Article  CAS  Google Scholar 

  4. T. Ibn-Mohammed, S.C.L. Koh, I.M. Reaney, A. Acquaye, G. Schileo, K.B. Mustapha, R. Greenough, Renew. Sustain. Energy Rev. 80, 1321 (2017)

    Article  CAS  Google Scholar 

  5. J. Zhang, W. Zhang, H.-M. Cheng, S.R.P. Silva, Mater. Today 39, 66 (2020)

    Article  Google Scholar 

  6. S. Yue, S.C. McGuire, H. Yan, Y.S. Chu, M. Cotlet, X. Tong, S.S. Wong, ACS Omega 4, 18219 (2019)

    Article  CAS  Google Scholar 

  7. F. Elfatouaki, O. Farkad, E.A. Ibnouelghazi, D. Abouelaoualim, A. Outzourhit, Mater. Sci. Semicond. Process. 143, 106488 (2022)

    Article  CAS  Google Scholar 

  8. S.-Y. Liu, M. Sun, S. Zhang, S. Liu, D.-J. Li, Z. Niu, Y. Li, S. Wang, Appl. Phys. Lett. 118, 141903 (2021)

    Article  CAS  Google Scholar 

  9. S. Bouhmaidi, A. Marjaoui, A. Talbi, M. Zanouni, K. Nouneh, L. Setti, Comput. Condens. Matter. 31, e00663 (2022)

    Article  Google Scholar 

  10. M. Roknuzzaman, K. Ostrikov, H. Wang, A. Du, T. Tesfamichael, Sci. Rep. 7, 14025 (2017)

    Article  Google Scholar 

  11. Z.-G. Lin, L.-C. Tang, C.-P. Chou, J. Phys. Condens. Matter. 19, 476209 (2007)

    Article  Google Scholar 

  12. L.-C. Tang, Y.-C. Chang, J.-Y. Huang, M.-H. Lee, C.-S. Chang, Jpn. J. Appl. Phys. 48, 112402 (2009)

    Article  Google Scholar 

  13. M. Abbate, F.M.F. de Groot, J.C. Fuggle, A. Fujimori, O. Strebel, F. Lopez, M. Domke, G. Kaindl, G.A. Sawatzky, M. Takano, Y. Takeda, H. Eisaki, S. Uchida, Phys. Rev. B 46, 4511 (1992)

    Article  CAS  Google Scholar 

  14. Y. Wang, X. Lü, W. Yang, T. Wen, L. Yang, X. Ren, L. Wang, Z. Lin, Y. Zhao, J. Am. Chem. Soc. 137, 11144 (2015)

    Article  CAS  Google Scholar 

  15. L. Wang, K. Wang, B. Zou, J. Phys. Chem. Lett. 7, 2556 (2016)

    Article  CAS  Google Scholar 

  16. D. Liu, Q. Li, H. Jing, K. Wu, RSC Adv. 9, 3279 (2019)

    Article  CAS  Google Scholar 

  17. M.V. Talanov, V.B. Shirokov, V.M. Talanov, Acta Cryst A 72, 222 (2016)

    Article  CAS  Google Scholar 

  18. F. Wang, M. Tan, C. Li, C. Niu, X. Zhao, Org. Electron. 67, 89 (2019)

    Article  CAS  Google Scholar 

  19. N.V. Ter-Oganessian, V.P. Sakhnenko, Acta Cryst B 75, 1034 (2019)

    Article  CAS  Google Scholar 

  20. G. Yuan, S. Qin, X. Wu, H. Ding, A. Lu, Phase Transitions 91, 38 (2018)

    Article  CAS  Google Scholar 

  21. M. Ali Haq, M. Saiduzzaman, T. Islam Asif, I. Khan Shuvo, K. Monower Hossain, RSC Adv. 11, 36367 (2021)

    Article  Google Scholar 

  22. R. Ullah, M.A. Ali, S. Murad, A. Khan, S.A. Dar, I. Mahmood, A. Laref, Mater. Res. Express 6, 125901 (2019)

    Article  CAS  Google Scholar 

  23. M.A. Islam, J. Islam, M.N. Islam, S.K. Sen, A.K.M.A. Hossain, AIP Adv. 11, 045014 (2021)

    Article  CAS  Google Scholar 

  24. S. Soleimanpour, F. Kanjouri, Indian J. Phys. 89, 687 (2015)

    Article  CAS  Google Scholar 

  25. M.S. Alam, M. Saiduzzaman, A. Biswas, T. Ahmed, A. Sultana, K.M. Hossain, Sci. Rep. 12, 8663 (2022)

    Article  CAS  Google Scholar 

  26. O. Das, M. Saiduzzaman, K.M. Hossain, I.K. Shuvo, M.M. Rahman, S. Ahmad, S.K. Mitro, Results Phys. 44, 106212 (2023)

    Article  Google Scholar 

  27. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  Google Scholar 

  28. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  Google Scholar 

  29. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  30. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  31. J. Heyd, G.E. Scuseria, J. Chem. Phys. 121, 1187 (2004)

    Article  CAS  Google Scholar 

  32. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  33. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  34. A. Marini, C. Hogan, M. Grüning, D. Varsano, Comput. Phys. Commun. 180, 1392 (2009)

    Article  CAS  Google Scholar 

  35. F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944)

    Article  CAS  Google Scholar 

  36. Y. Pan, S. Chen, Vacuum 198, 110898 (2022)

    Article  CAS  Google Scholar 

  37. A.P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu, T. Pandey, C. Jin, A.K. Singh, D. Akinwande, J.-F. Lin, Nat. Commun. 5, 3731 (2014)

    Article  CAS  Google Scholar 

  38. S.S. Gillani, R. Ahmad, I. Zeba, M. Shakil, M. Rizwan, M. Rafique, M. Sarfraz, S.S. Hassan, Mater. Today Commun. 23, 100919 (2020)

    Article  CAS  Google Scholar 

  39. R. Hill, Proc. Phys. Soc. A 65, 349 (1952)

    Article  Google Scholar 

  40. Y. Ying, X. Luo, H. Huang, J. Phys. Chem. C 122, 17718 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of PPR2-OGI Env (reference PPR2/2016/79) Team- Faculty of Sciences and Techniques-Tangier-Morocco for providing cloud for computational research facility.

Author information

Authors and Affiliations

Authors

Contributions

AM: Conceptualization, Methodology, Data curation, Software, Writing—Original draft preparation MAT: Methodology, Writing—Original draft preparation. MZ: Validation, Writing- Reviewing and Editing, Resources, Supervision.

Corresponding author

Correspondence to Adil Marjaoui.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The authors declare that this article does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marjaoui, A., Ait Tamerd, M. & Zanouni, M. Semiconducting-metallic phase transition with tunable optoelectronics and mechanical properties of halide perovskites TlGeX3 (X = F, Cl) under pressure. J Mater Sci: Mater Electron 34, 2327 (2023). https://doi.org/10.1007/s10854-023-11737-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11737-4

Navigation