Skip to main content
Log in

Structural, mechanical, electronic, optical, and thermoelectric analysis of cubic-tetragonal halide perovskites CsGeX3 (X = Cl, Br, I)

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this study, using the first-principles calculation we presented a new field of materials concerning the transparent conducting halide perovskites CsGeX3 (X = Cl, I, Br) in the phases: ideal cubic, S-cubic, D-cubic, and tetragonal. The study aimed to explore and investigate the most mechanical stable state by calculating the elastic constant \(C_{ij}\). Our findings indicated that the preferential ground state mechanical stability is the non-magnetic state. On analysis of optical properties, we found high optical transmission practically ~ 80%. Electrical conductivity is also high, and the figure of merit is close to ~ 1. Based on the results obtained from theoretical DFT calculation, it is proposed that these materials may be an appropriate candidate for photovoltaic and other optoelectronic device applications. As they have high coefficients, low reflection, and strong optical conductivity at the UV–Vis range which are crucial for designing a transparent conducting material for possible technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Research data policy and data availability statements

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H Jin, J Im and A J Freeman Phys. Rev. B 86 121102 (2012)

    Article  ADS  Google Scholar 

  2. K Yang, W Setyawan, S Wang, M B Nardelli and S Curtarolo Nat. Mater. 11 614 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. A Kojima, K Teshima, Y Shirai and T Miyasaka J. Am. Chem. Soc. 131 6050 (2009)

    Article  CAS  PubMed  Google Scholar 

  4. L E Jones and R C Liebermann Phys. Earth Planet. Inter. 9 101 (1974)

    Article  ADS  CAS  Google Scholar 

  5. J Im, C C Stoumpos, H Jin, A J Freeman and M G Kanatzidis J. Phys. Chem. Lett. 6 3503 (2015)

    Article  CAS  PubMed  Google Scholar 

  6. R A Jishi, O B Ta and A A Sharif J. Phys. Chem. C 118 28344 (2014)

    Article  CAS  Google Scholar 

  7. S A Khandy and D C Gupta RSC Adv. 6 48009 (2016)

    Article  ADS  CAS  Google Scholar 

  8. J Kim, S C Lee, S H Lee and K H Hong J. Phys. Chem. C 119 4627 (2015)

    Article  CAS  Google Scholar 

  9. Z K Tan et al. Nat. Nanotechnol. 9 687 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. T Lu, H Li, M Li, S Wang and W Lu ACS Omega 7 21583 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. J De Roo et al. ACS Nano 10 2071 (2016)

    Article  PubMed  Google Scholar 

  12. S Pramchu, Y Laosiritaworn and A P Jaroenjittichai Surf. Coat. Technol. 306 159 (2016)

    Article  CAS  Google Scholar 

  13. X Qiu, L N Austin, P A Muscarella, J S Dyck and C Burda Angew. Chem. Int. Ed. 45 5656 (2006)

    Article  CAS  Google Scholar 

  14. Y-K Zhu, J Guo, L Chen, S-W Gu, Y-X Zhang, Q Shan, J Feng and Z-H Ge Chem. Eng. J. 407 126407 (2021)

    Article  CAS  Google Scholar 

  15. B Poudel et al. Science 320 634 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz, WIEN2K: An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties (eds.) K Schwarz (Austria: Vienna University of Technology) (2001)

  17. G K H Madsen, P Blaha, K E Schwarz, E Sjostedt and L Nordstrom Phys. Rev. B 64 195134 (2001)

    Article  ADS  Google Scholar 

  18. J P Perdew, K Burke and M Emzerholf Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. F Tran and P Blaha Phys. Rev. Lett. 102 226401 (2009)

    Article  ADS  PubMed  Google Scholar 

  20. A D Becke and M R Roussel Phys. Rev. A 39 3761 (1989)

    Article  ADS  CAS  Google Scholar 

  21. B Amin, M I Ahmad, S Maqbool, G Said and R J Ahmad Appl. Phys. 109 023109 (2011)

    Article  Google Scholar 

  22. C M I Okoye J. Phys. Condens. Matter. 15 5945 (2003)

    Article  ADS  CAS  Google Scholar 

  23. F Wooten Optical Properties of Solids (Oxford: Oxford University Press) (1972)

    Google Scholar 

  24. E Maskar, A F Lamrani, M Belaiche, H Essaqote, A Es-Smairi, T V Vu and D P Rai J. Supercond. Nov. Magn. 34 2105 (2021)

    Article  CAS  Google Scholar 

  25. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz Wien2k: An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties (2001)

  26. G K H Madsen and D J Singh Comput. Phys. Commun. 175 67 (2006)

    Article  ADS  CAS  Google Scholar 

  27. A C Dias, M P Lima and J L F Da Silva J. Phys. Chem. C 125 19142 (2021)

    Article  CAS  Google Scholar 

  28. M Born, K Huang and M Lax Am. J. Phys. Oxf. 23 474 (1955)

    Article  ADS  Google Scholar 

  29. W W Voigt Ann. Phys. 38 573 (1889)

    Article  Google Scholar 

  30. A. Reuss Math. Phys. 9 49 (1929)

  31. R Hill Proc. Phys. Soc. Sect. A 65 349 (1952)

    Article  ADS  Google Scholar 

  32. C Zener Elasticity and Anelasticity of Metals (Chicago: University of Chicago Press) (1948)

    Google Scholar 

  33. S A Dar et al. Chin. J. Phys. 55 1769 (2017)

    Article  CAS  Google Scholar 

  34. I N Frantsevich, F F Voronov and S A Bokuta Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (ed) I N Frantsevich (Naukuva Dumka, Kiev) p 60 (1983)

  35. S A Khandy, T Alshahrani, H I Elsaeedy and D C Gupta J. Alloys Compd. 957 170296 (2023)

    Article  CAS  Google Scholar 

  36. S A Khandy and D C Gupta Mater. Sci. Eng. B 265 114985 (2021)

    Article  CAS  Google Scholar 

  37. F Colmenero, A M Fernández, V Timón and J Cobos RSC Adv. 8 24599 (2018)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. D H Chung and W R Buessem J. Appl. Phys. 38 2535 (1967)

    Article  ADS  CAS  Google Scholar 

  39. N E Christensen Solid State Commun. 49 701 (1984)

    Article  ADS  CAS  Google Scholar 

  40. M Dacorogna, J Ashkenazi and M Peter Phys. Rev. B 26 1527 (1982)

    Article  ADS  CAS  Google Scholar 

  41. I J A Ghani Int. J. Phys. Res. 3 5 (2013)

    Google Scholar 

  42. F Lahourpour, A Boochani, S S Parhizgar and S M Elahi J. Theor. Appl. Phys. 13 191 (2019)

    Article  ADS  Google Scholar 

  43. E Maskar, A F Lamrani, M Belaiche, A Es-Smairi and D P Rai Mater. Sci. Semicond. 139 106326 (2022)

    Article  CAS  Google Scholar 

  44. E Maskar, A F Lamrani, M Belaiche, A Es-Smairi, M Khuili, S Al-Qaisi and D P Rai Surf. Interfaces 24 101051 (2021)

    Article  CAS  Google Scholar 

  45. S Bouhmaidi, A Marjaoui, A Talbi, M Zanouni, K Nouneh and L Setti Comput. Condens. Matter 31 e00663 (2022)

    Article  Google Scholar 

  46. E Maskar, A F Lamrani, M Belaiche, A Es-Smairi, D P Rai and N Fazouan Superlattices Microstruct. 150 106776 (2020)

    Article  Google Scholar 

  47. A M Dehkordi, M Zebarjadi, J He and T M Tritt Mater. Sci. Eng. R Rep. 97 1 (2015)

    Article  Google Scholar 

  48. V Shivhare, S A Khandy and D C Gupta Sci. Rep. 13 9115 (2023)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. S A Khandy and D C Gupta Int. J. Energy Res. 45 1 (2021)

    Article  Google Scholar 

  50. S A Khandy and D C Gupta Sci. Rep. 12 19690 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. M Yeganeh, F Kafi and A Boochani Superlattices Microstruct. 138 106367 (2020)

    Article  CAS  Google Scholar 

  52. F Aslam, B Sabir and M Hassan Appl. Phys. A 127 1 (2021)

    Article  Google Scholar 

  53. T Ye, X Wang, X Li, A Q Yan, S Ramakrishna and J Xu J. Mater. Chem. C 5 1255 (2017)

    Article  CAS  Google Scholar 

  54. P Wu, Y Xiong, L Sun, G Xie and L Xu Org. Electron. 55 90 (2018)

    Article  CAS  Google Scholar 

  55. X Mettan, R Pisoni, P Matus, A Pisoni, J Jaćimović, B Náfrádi, M Spina, D Pavuna, L Forró and E Horváth J. Phys. Chem. C 119 11506 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A. Laref acknowledges the Research Center of Female Scientific and Medical Colleges, Deanship of Scientific Research, King Saud University, Saudi Arabia for financial support.

Funding

No available funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

EM and AFL wrote the first draft, validate the results, MB, AE-S, AL, MP and JS contributed in calculations of the results and editing the final draft. DPR helps in validation formalism, methodology and final submission.

Corresponding author

Correspondence to D. P. Rai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maskar, E., Lamrani, A.F., Belaiche, M. et al. Structural, mechanical, electronic, optical, and thermoelectric analysis of cubic-tetragonal halide perovskites CsGeX3 (X = Cl, Br, I). Indian J Phys 98, 1661–1675 (2024). https://doi.org/10.1007/s12648-023-02938-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02938-y

Keywords

Navigation