Skip to main content

Advertisement

Log in

Study of the Impact of Strain on the Physical Properties of the Li2SnI6 Compound

  • Research
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Perovskites represent distinctive materials suitable for both transport and optoelectronic applications, harnessing renewable resources to produce energy. In this study, the perovskite Li2SnI6 has been explored, focusing on a comprehensive analysis of its physical properties under strain. The encompassed investigation of the structural, elastic, electronic, optical, and thermoelectric characteristics of the studied compound. Utilizing density functional theory (DFT) implemented in the Wien2k package, we employed the LSDA+mBJ approximation to determine the exchange-correlation potential. The elastic constants and related parameters have been reported such as bulk modulus, shear modulus, Young’s modulus, anisotropy factor, Poisson’s ratio, and internal strain parameter for Li2SnI6 in its cubic structure. The electronic part reveals the semiconductor behavior of the studied compound and a decrease in gap energy with increasing pressure, reaching E= 0.2 eV for P = 12 GPa. Additionally, the absorption of optical factors lies in the ultra-violet (UV) region, noted at P = 12 GPa, with an intensity of 230 × 104 cm−1, which makes this material suitable for photovoltaic devices. Furthermore, we delved into the electrical conductivity, Seebeck coefficient, and electronic part of thermal conductivity. The results indicated that the compound demonstrates p-type behavior, as evidenced by positive values for the Seebeck coefficient with the highest value of 240 µV/K observed for P = 4 GPa. The analysis of thermoelectric and optical properties suggests that the studied perovskite is well-suited for applications in renewable energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Muscarella, L.A., Hutter, E.M.: Halide double-perovskite semiconductors beyond photovoltaics. ACS Energy Lett. 7, 2128–2135 (2022)

    Article  Google Scholar 

  2. Chowdhury, T.H., Reo, Y., Yusoff, A.R.B.M., Noh, Y.Y.: Sn-based perovskite halides for electronic devices. Adv. Sci. 9, 2203749 (2022)

    Article  Google Scholar 

  3. Ayaydah, W., Raddad, E., Hawash, Z.: Sn-based perovskite solar cells towards high stability and performance. Micromachines 14, 806 (2023)

    Article  Google Scholar 

  4. Liu, J., Tang, G., Zhou, J., Hong, J.: Two-dimensional electronic structure for high thermoelectric performance in halide perovskite Cs2Au(I)au(III)I6. Phys. Chem. Chem. Phys. 24, 24975–24982 (2022)

    Article  Google Scholar 

  5. Liga, S.M., Konstantatos, G.: Colloidal synthesis of lead-free Cs2TiBr6 – xIx perovskite nanocrystals. J. Mater. Chem. C 9, 11098–11103 (2021)

    Article  Google Scholar 

  6. Abfalterer, A., et al.: Colloidal synthesis and optical properties of perovskite-inspired cesium zirconium halide nanocrystals. ACS Mater. Lett. 2, 1644–1652 (2020)

    Article  Google Scholar 

  7. Zhou, L., et al.: All-inorganic lead-free Cs2PdX6 (X = br, I) perovskite nanocrystals with single unit cell thickness and high stability. ACS Energy Lett. 3, 2613–2619 (2018)

    Article  Google Scholar 

  8. Tang, T., Diao, X., Tang, Y.: Optoelectronic property tuning of A2BX6(A = in, tl; B = pd, pt; X = cl, br, I): A first-principles study. Chem. Phys. Lett. 826, 140678 (2023)

    Article  Google Scholar 

  9. Faizan, M., Zhao, G., Zhang, T., Wang, X., He, X., Zhang, L.: Elastic and Thermoelectric Properties of Vacancy Ordered Double Perovskites A2BX6: A DFT Study. Acta Phys. Chim. Sinica 40(1), 2303004 (2024). https://doi.org/10.3866/PKU.WHXB202303004

    Article  Google Scholar 

  10. Faizan, M., et al.: Electronic and optical properties of vacancy ordered double perovskites A2BX6 (A = rb, cs; B = sn, pd, pt; and X = cl, br, I): a first-principles study. Sci. Rep. 11, 6965 (2021)

    Article  ADS  Google Scholar 

  11. Cai, Y., et al.: Computational study of halide perovskite-derived A2BX6 inorganic compounds: chemical trends in electronic structure and structural stability. arXiv.org. (2024)

  12. Faizan, M., et al.: Understanding the electronic structure and optical properties of vacancy-ordered double perovskite A2BX6 for optoelectronic applications. Energy Fuels 36, 7065–7074 (2022)

    Article  Google Scholar 

  13. Sakai, N., et al.: Solution-processed cesium hexabromopalladate(IV), Cs2PdBr6, for optoelectronic applications. J. Am. Chem. Soc. 139, 6030–6033 (2017)

    Article  Google Scholar 

  14. Faizan, M., et al.: Electronic, optical, and thermoelectric properties of perovskite variants A2BX6: insight and design via first-principles calculations. Int. J. Energy Res. 45, 4495–4507 (2021)

    Article  Google Scholar 

  15. Hnuna, L., Pachuau, Z.: Electronic, optical and thermoelectric properties of halide double perovskites Rb2AgInX6 (X = cl, br, I). Phys. Scr. 98, 035814 (2023)

    Article  ADS  Google Scholar 

  16. Abbas, Z., et al.: DFT insights for structural, opto-electronic, thermodynamic and transport characteristics of Tl2TeX6 (X = at, br, cl, I) double perovskites for low-cost solar cell applications. Inorg. Chem. Commun. 163, 112293 (2024)

    Article  Google Scholar 

  17. Al-Qaisi, S., et al.: Opto-electronic and thermophysical characteristics of A2TlAgF6 (A = rb, Cs) for green technology applications. J. Comput. Chem. (2024). https://doi.org/10.1002/jcc.27347

    Article  Google Scholar 

  18. Benyoussef, S., Essajai, R., Elamraoui, Y., Ez-Zahrouy, H.: Ab-initio calculations combined with monte carlo simulation of the physical properties of Fe3S4 compound. Chem. Phys. 548, 111233 (2021)

    Article  Google Scholar 

  19. Aziz, O., et al.: Calculated properties of GdNi intermetallic compound for the nitrogen liquefaction process: Insight into Ab-initio computations and monte carlo simulation. Phys. Scr. 98, 105801 (2023)

    Article  ADS  Google Scholar 

  20. Aboubakre, S., et al.: Structural, electronic, and magnetic properties and magnetocaloric effect of NdPd intermetallic compound for cryogenic cooling applications. J. Supercond. Novel Magn. 37, 1–9 (2024)

    Google Scholar 

  21. Jabar, A., Bahmad, L., Benyoussef, S.: Structural, optical, elastic, thermoelectric and thermodynamic properties of the IrMn material: A DFT study. Mod. Phys. Lett. B 38, 2450065 (2023)

    Article  ADS  Google Scholar 

  22. Jabar, A., Labrim, H., Larbi, L., Jaber, B., Benyoussef, S.: Study of physical properties of the new inorganic perovskites LiSnX3 (X = br or I): a DFT approach. Mod. Phys. Lett. B 37, 2350132 (2023)

    Article  ADS  Google Scholar 

  23. Benyoussef, S., Jabar, A., Bahmad, L.: The physical properties of the half-heusler mncobi compound: DFT and monte carlo studies. J. Inorg. Organomet. Polym. Mater. 67, 1–13 (2023). https://doi.org/10.1007/s10904-023-02954-9

    Article  Google Scholar 

  24. Labrim, H., et al.: Strain effect on optoelectronic and thermoelectric properties of the perovskite NaGeI3. SPIN. World Scientific Publishing Company (2024). https://doi.org/10.1142/S2010324724500036

    Article  Google Scholar 

  25. Caid, M., Rached, D., Al-Qaisi, S., Rached, Y., Rached, H.: DFT calculations on physical properties of the lead-free halide-based double perovskite compound Cs2CdZnCl6. Solid State Commun. 369, 115216 (2023)

    Article  Google Scholar 

  26. Boutramine, A., et al.: Optoelectronic and thermoelectric properties of new lead-free K2NaSbZ6 (Z = br, I) halide double-perovskites for clean energy applications: a DFT study. Opt. Quant. Electron. 56, 417 (2024)

    Article  ADS  Google Scholar 

  27. Rahman, N., et al.: Insight into the structural, optoelectronic, elastic and thermodynamic properties of new lead free double halides perovskites Cs2XCuF6 (X = sc, Y): a first principle study. Phys. Scr. 99, 015949 (2023)

    Article  ADS  Google Scholar 

  28. Nasarullah, et al.: Investigation of X2GaAgCl6 (X = K, Cs) for optoelectronic devices: a density functional theory study. Physica Status Solidi 259, 2200189 (2022)

    Article  ADS  Google Scholar 

  29. Aldaghfag, S.A., Arshad, M., Nasarullah, M., Yaseen, H.H., Somaily, H.H.: Computational study of Cs2ScXBr6 (X = ag, tl) for renewable energy devices. Phys. B Condens. Matter 646, 414277 (2022)

    Article  Google Scholar 

  30. Nasarullah, M., Yaseen, S., Aldaghfag, M., Zahid, M.: Physical characteristics of X2NaMoBr6 (X = K, rb): A DFT study. Mater. Sci. Semiconduct. Process. 147, 106760 (2022)

    Article  Google Scholar 

  31. Munir, S., Butt, M.K., Aldaghfag, S.A., Yaseen, M., Nazar, M., Somaily, M.: First-principles calculations to investigate emerging double perovskites K2NaMoX6 (X = cl, I) compounds for magnetic and optoelectronic applications. Phys. B Condens. Matter 645, 414252 (2022)

    Article  Google Scholar 

  32. Jamshaid, S., et al.: Investigation of cubic K2NaXBr6(X = sc, Y) double perovskites for optical and thermoelectric devices. J. Phys. Chem. Solids 178, 111341 (2023)

    Article  Google Scholar 

  33. Nasarullah, et al.: Study of elastic, structural, thermoelectric and optoelectronics characteristics of Na2YCuX6(X = br, cl) halide double perovskites. Phys. Scr. 97, 105705 (2022)

    Article  ADS  Google Scholar 

  34. Jabar, A., Benyoussef, S., Bahmad, L.: A first principal study of the electronic, optic and thermoelectric properties of double perovskite K2CuRhX6 (X = cl or I). Opt. Quant. Electron. 55, 839 (2023)

    Article  Google Scholar 

  35. Benyoussef, S., Jabar, A., Bahmad, L.: Biaxial and uniaxial tensile strains effects on electronic, optical, and thermoelectric properties of ScBiTe3 compound. Cryst. Res. Technol. 58, 2300069 (2023)

    Article  Google Scholar 

  36. Jabar, A., Benyoussef, S., Bahmad, L.: Electronic, optical, thermodynamic and thermoelectric properties of LiCu3Bi5 compound under strain effect. Opt. Quant. Electron. 56, 38 (2023)

    Article  ADS  Google Scholar 

  37. Maaouni, N., Jabar, A., Benyoussef, S., Tahiri, N., Bahmad, L.: Electronic, thermodynamic, optical, and thermoelectric properties of Sr2RuO4 compound: Ab-initio principle. Opt. Quant. Electron. 56, 679 (2024)

    Article  Google Scholar 

  38. Labrim, H., Jabar, A., Laanab, L., Jaber, B., Bahmad, L., Selmani, Y., Benyoussef, S.: Optoelectronic and thermoelectric properties of the perovskites: NaSnX3 (X = br or I)—a DFT study. J. Inorg. Organomet. Polym. Mater. 33, 3049–3059 (2023)

    Article  Google Scholar 

  39. Benyoussef, S., Jabar, A., Bahmad, L.: The magnetocaloric, magnetic, optical, and thermoelectric properties of EuB6 compound: DFT and monte carlo study. J. Am. Ceram. Soc. 107, 945–955 (2023)

    Article  Google Scholar 

  40. Blaha, P., Schwarz, K., Tran, F., Laskowski, R., Madsen, G.K.H., Marks, L.D.: Wien2k: an APW+ lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020)

    Article  ADS  Google Scholar 

  41. Madsen, G.K.H., Singh, D.J.: BoltzTraP. A code for calculating band-structure dependent quantities. arXiv.org. (2024)

  42. Towle, L.C.: Empirical equations of state for solids. Appl. Phys. 8, 117–123 (1975)

    Article  ADS  Google Scholar 

  43. Jamal, M., Jalali Asadabadi, S., Ahmad, I., Rahnamaye Aliabad, H.A.: Elastic constants of cubic crystals. Comput. Mater. Sci. 95, 592–599 (2014)

    Article  Google Scholar 

  44. Benyoussef, S., Jabar, A., Tahiri, N., Bahmad, L.: DFT study of electronic, optical, thermoelectric, and thermodynamic properties of the HfO2 material. Braz. J. Phys. 54(3), 83 (2024)

    Article  Google Scholar 

  45. Pedesseau, L., et al.: Advances and promises of layered halide hybrid perovskite semiconductors. ACS Nano 10, 9776–9786 (2016)

    Article  Google Scholar 

  46. Xu, J., Carroll, D., Biswas, K., Moretti, F., Gridin, S., Williams, R.T.: Revisiting the venerable ABX3 family with organic flexibility and new applications, pp. 537–588. In: Optical Properties of Materials and Their Applications, John Wiley & Sons, Ltd (2019)

    Google Scholar 

  47. Li, S.-N., Cao, B.Y.: Generalized boltzmann transport theory for relaxational heat conduction. Int. J. Heat Mass Transf. 173, 121225 (2021)

    Article  Google Scholar 

  48. Al-Qaisi, S., et al.: A theoretical investigation of the lead-free double perovskites halides Rb2XCl6 (X = Se, Ti) for optoelectronic and thermoelectric applications. J. Comput. Chem. 44, 1690–1703 (2023)

    Article  Google Scholar 

  49. Al-Qaisi, S., et al.: First-principles calculations to investigate electronic, structural, optical, and thermoelectric properties of semiconducting double perovskite Ba2YBiO6. Micro Nanostruct. 170, 207397 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.B. and L.B. wrote the main manuscript text. A.J. prepared figures. All authors contributed and reviewed the manuscript.

Corresponding author

Correspondence to L. Bahmad.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benyoussef, S., Jabar, A. & Bahmad, L. Study of the Impact of Strain on the Physical Properties of the Li2SnI6 Compound. J Supercond Nov Magn (2024). https://doi.org/10.1007/s10948-024-06752-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10948-024-06752-3

Keywords

Navigation