Skip to main content
Log in

Exploring the charge storage mechanism in high-performance Co@MnO2-based hybrid supercapacitors using Randles–Ševčík and Dunn’s models

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Hybrid supercapacitors are energy storage technology offering higher power and energy density as compared to capacitors and batteries. Cobalt-doped manganese oxide (Co@MnO2) was synthesized using an easy and affordable sol–gel process and measured the electrochemical properties. A value of the specific capacity of 1141.42 Cg−1 was obtained which was larger in comparison to the reference sample (MnO2 = 673.79 Cg−1). The value of the specific capacitance was achieved 1902 Fg−1. To design a hybrid supercapacitor device, Co@MnO2 was used as the positive electrode and the activated carbon was employed as the negative electrode in two-electrode assembly. According to calculations, the measured value of the specific capacitance of Co@MnO2 was 713.25 Fg−1. The charge storage mechanism is supported with the help of Randles–Ševčík and Dunn’s models. The estimated value of energy and power densities were 3200 Wh kg−1 and 24 Wkg−1, respectively. The stability of this device was checked by putting it to 1000 charging and discharging cycles, and it retained 86% of its initial capacity. Our result provides a platform for enhancing the functionality of energy storage systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data are available on request.

References

  1. Zuo W et al (2017) Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci 4(7):1600539

    Article  Google Scholar 

  2. Yu Z et al (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8(3):702–730

    Article  CAS  Google Scholar 

  3. Barnett S, Irvine J, Vohs J (2004) Advanced anodes for high-temperature fuel cells. Nat Mater 3(1):17–27

    Article  PubMed  Google Scholar 

  4. Lu Q et al (2011) Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites. Angew Chem Int Ed 50(30):6847–6850

    Article  CAS  Google Scholar 

  5. Omar FS et al (2017) A promising binary nanocomposite of zinc cobaltite intercalated with polyaniline for supercapacitor and hydrazine sensor. J Alloys Compd 716:96–105

    Article  CAS  Google Scholar 

  6. Gupta V, Miura N (2006) Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochim Acta 52(4):1721–1726

    Article  CAS  Google Scholar 

  7. Rahmanifar MS et al (2019) Asymmetric supercapacitors: an alternative to activated carbon negative electrodes based on earth abundant elements. Mater Today Energy 12:26–36

    Article  Google Scholar 

  8. Iqbal J et al (2019) Density functional theory simulation of cobalt oxide aggregation and facile synthesis of a cobalt oxide, gold and multiwalled carbon nanotube based ternary composite for a high performance supercapattery. New J Chem 43(33):13183–13195

    Article  CAS  Google Scholar 

  9. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157(1):11–27

    Article  CAS  Google Scholar 

  10. Yusin S, Bannov A (2017) Synthesis of composite electrodes for supercapacitors based on carbon materials and the metal oxide/metal hydroxide system. Prot Met Phys Chem Surf 53(3):475–482

    Article  CAS  Google Scholar 

  11. Sato T, Masuda G, Takagi K (2004) Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim Acta 49(21):3603–3611

    Article  CAS  Google Scholar 

  12. Han S et al (2019) Mechanical and electrical properties of graphene and carbon nanotube reinforced epoxy adhesives: experimental and numerical analysis. Compos Part A: Appl Sci Manufac 120:116–126

    Article  CAS  Google Scholar 

  13. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224

    Article  PubMed  CAS  Google Scholar 

  14. Iqbal MZ et al (2020) Strontium phosphide-polyaniline composites for high performance supercapattery devices. Ceram Int 46(8):10203–10214

    Article  CAS  Google Scholar 

  15. Shahabuddin S et al (2019) Polyaniline-SrTiO3 nanocube based binary nanocomposite as highly stable electrode material for high performance supercapaterry. Ceram Int 45(9):11428–11437

    Article  CAS  Google Scholar 

  16. Simon P, Gogotsi Y, Peter R (2010) Materials for electrochemical capacitors in nanoscience and technology. Nat Rev Mater. https://doi.org/10.1038/nmat2297

    Article  Google Scholar 

  17. Wang D et al (2009) Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3(4):907–914

    Article  PubMed  CAS  Google Scholar 

  18. Li L et al (2010) Synthesis and electrochemical properties of two types of highly ordered mesoporous MnO2. Electrochim Acta 55(5):1682–1686

    Article  CAS  Google Scholar 

  19. Cheng F et al (2006) Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg Chem 45(5):2038–2044

    Article  PubMed  CAS  Google Scholar 

  20. Li Z et al (2011) Synthesis of hydrothermally reduced graphene/MnO2 composites and their electrochemical properties as supercapacitors. J Power Sources 196(19):8160–8165

    Article  CAS  Google Scholar 

  21. Chabre Y, Pannetier J (1995) Structural and electrochemical properties of the proton/γ-MnO2 system. Prog Solid State Chem 23(1):1–130

    Article  CAS  Google Scholar 

  22. Wolfenstine J, Allen J (2004) LiNiPO4–LiCoPO4 solid solutions as cathodes. J Power Sources 136(1):150–153

    Article  CAS  Google Scholar 

  23. Minakshi M et al (2011) Synthesis and characterization of olivine LiNiPO4 for aqueous rechargeable battery. Electrochim Acta 56(11):4356–4360

    Article  CAS  Google Scholar 

  24. Li Z et al (2011) Flexible graphene/MnO 2 composite papers for supercapacitor electrodes. J Mater Chem 21(38):14706–14711

    Article  CAS  Google Scholar 

  25. Iqbal MZ et al (2020) Cobalt-oxide/carbon composites for asymmetric solid-state supercapacitors. Mater Res Bull 131:110974

    Article  CAS  Google Scholar 

  26. Kalu E et al (2001) Cyclic voltammetric studies of the effects of time and temperature on the capacitance of electrochemically deposited nickel hydroxide. J Power Sources 92(1–2):163–167

    Article  CAS  Google Scholar 

  27. Yin B-S et al (2016) In situ growth of free-standing all metal oxide asymmetric supercapacitor. ACS Appl Mater Interfaces 8(39):26019–26029

    Article  PubMed  CAS  Google Scholar 

  28. Sun J et al (2017) Recent progress of fiber-shaped asymmetric supercapacitors. Mater Today Energy 5:1–14

    Article  Google Scholar 

  29. Zhi M et al (2013) Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1):72–88

    Article  PubMed  CAS  Google Scholar 

  30. Shao Y et al (2016) Three-dimensional hierarchical ni x Co1–x O/Ni y Co2–y P@ C hybrids on nickel foam for excellent supercapacitors. ACS Appl Mater Interfaces 8(51):35368–35376

    Article  PubMed  CAS  Google Scholar 

  31. Li T, Kaercher S, Roesky PW (2014) Synthesis, structure and reactivity of rare-earth metal complexes containing anionic phosphorus ligands. Chem Soc Rev 43(1):42–57

    Article  PubMed  Google Scholar 

  32. Xia X et al (2011) Three-dimentional porous nano-Ni/Co (OH) 2 nanoflake composite film: a pseudocapacitive material with superior performance. J Phys Chem C 115(45):22662–22668

    Article  CAS  Google Scholar 

  33. Xiao W et al (2010) Synthesis, characterization, and lithium storage capability of AMoO4 (A = Ni, Co) nanorods. Chem Mater 22(3):746–754

    Article  CAS  Google Scholar 

  34. Park K-S et al (2012) Electrochemical performance of Ni x Co 1-x MoO 4 (0 ≤ x ≤ 1) nanowire anodes for lithium-ion batteries. Nanoscale Res Lett 7:1–7

    Article  Google Scholar 

  35. Xiao K et al (2015) Honeycomb-like NiMoO 4 ultrathin nanosheet arrays for high-performance electrochemical energy storage. J Mater Chem A 3(11):6128–6135

    Article  CAS  Google Scholar 

  36. Sharma P et al (2020) Zn Metal Atom Doping on the Surface plane of One-Dimesional NiMoO4 nanorods with Improved Redox Chemistry. ACS Appl Mater Interfaces 12(40):44815–44829

    Article  PubMed  CAS  Google Scholar 

  37. Minakshi M et al (2018) New insights into the electrochemistry of magnesium molybdate hierarchical architectures for high performance sodium devices. Nanoscale 10(27):13277–13288

    Article  PubMed  CAS  Google Scholar 

  38. Iqbal MZ et al (2020) Role of graphene and transition metal dichalcogenides as hole transport layer and counter electrode in solar cells. Int J Energy Res 44(3):1464–1487

    Article  CAS  Google Scholar 

  39. Qian Y, Du J, Kang DJ (2019) Enhanced electrochemical performance of porous co-doped TiO2 nanomaterials prepared by a solvothermal method. Microporous Mesoporous Mater 273:148–155

    Article  CAS  Google Scholar 

  40. Srikesh G, Nesaraj AS (2022) Facile soft chemical synthesis and characterisation of novel cobalt doped nickel oxide based nanostructured electrode materials for electrochemical capacitors. Mater Technol 37(3):190–203

    Article  CAS  Google Scholar 

  41. Sudhakar Y, Cortiñas SM, Selvakumar M (2019) Sequential layer-by-layer engineered polypyrrole-activated carbon multilayer films: high-energy composite electrode materials for symmetrical supercapacitors. Mater Technol 34(3):126–134

    Article  CAS  Google Scholar 

  42. Wickramaarachchi K, Minakshi M (2022) Consequences of electrodeposition parameters on the microstructure and electrochemical behavior of electrolytic manganese dioxide (EMD) for supercapacitor. Ceram Int 48(14):19913–19924

    Article  CAS  Google Scholar 

  43. Magar HS, Hassan RY, Mulchandani A (2021) Electrochemical impedance spectroscopy (EIS): principles, construction, and biosensing applications. Sensors 21(19):6578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ehsan MA, Hakeem AS, Rehman A (2020) Hierarchical growth of CoO nanoflower thin films influencing the electrocatalytic oxygen evolution reaction. Electrocatalysis 11(3):282–291

    Article  CAS  Google Scholar 

  45. Jin M et al (2017) Different distribution of in-situ thin carbon layer in hollow cobalt sulfide nanocages and their application for supercapacitors. J Power Sources 341:294–301

    Article  CAS  Google Scholar 

  46. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343(6176):1210–1211

    Article  PubMed  CAS  Google Scholar 

  47. Iqbal MF et al (2018) Excellent electrochemical performance of graphene oxide based strontium sulfide nanorods for supercapacitor applications. Electrochim Acta 273:136–144

    Article  CAS  Google Scholar 

  48. Iqbal MZ et al (2020) Co-MOF/polyaniline-based electrode material for high performance supercapattery devices. Electrochim Acta 346:136039

    Article  CAS  Google Scholar 

  49. Iqbal MZ et al (2020) Hydrothermally synthesized zinc phosphate-rGO composites for supercapattery devices. J Electroanal Chem 871:114299

    Article  CAS  Google Scholar 

  50. Iqbal MF et al (2017) High specific capacitance and energy density of synthesized graphene oxide based hierarchical Al2S3 nanorambutan for supercapacitor applications. Electrochim Acta 246:1097–1103

    Article  CAS  Google Scholar 

  51. Shameem A et al (2019) Electrochemical performance and optimization of α-NiMoO 4 by different facile synthetic approach for supercapacitor application. J Mater Sci: Mater Electron 30:3305–3315

    CAS  Google Scholar 

  52. Hoque M (2013) The oxygen reduction reaction in non- aqueous electrolytes: li-air battery applications.

  53. Jadhav SM et al (2021) Cobalt-doped Manganese Dioxide Hierarchical Nanostructures for Enhancing Pseudocapacitive Properties. ACS Omega 6(8):5717–5729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Lan Y et al (2018) Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale 10(25):11775–11781

    Article  PubMed  CAS  Google Scholar 

  55. Kashale AA et al (2019) Biosynthesized co-doped TiO2 nanoparticles based anode for lithium-ion battery application and investigating the influence of dopant concentrations on its performance. Compos Part B: Eng 167:44–50

    Article  CAS  Google Scholar 

  56. Dhole I et al (2018) Optimization of techno-economic cobalt doped nickel oxide electrode designed for energy storage. in AIP Conference Proceedings. AIP Publishing LLC

  57. Liu L et al (2019) Co doped α-Ni(OH)2 multiple-dimensional structure electrode material. Electrochim Acta 295:340–346

    Article  CAS  Google Scholar 

  58. Xue C-F et al (2022) Magnesium oxide scaffolded preparation of N, O self-doped biochar with super-hydrophilic surface for aqueous supercapacitor with desired energy density. J Energy Storage 53:105193

    Article  Google Scholar 

  59. Kim CH, Kim B-H (2015) Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes. J Power Sources 274:512–520

    Article  CAS  Google Scholar 

  60. Lorkit P, Panapoy M, Ksapabutr B (2014) Iron Oxide-based Supercapacitor from Ferratrane Precursor via Sol–gel-hydrothermal process. Energy Procedia 56:466–473

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by Researchers Supporting Project number (RSP2023R492), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

AMA, MR, and NM worked on the experiment, data collection, analysis, interpretation of results, and writing the manuscript. MWI, GD, S.M, EAA, AM, and SME helped with the calculation process, performed the experiments, and reviewed the manuscript.

Corresponding author

Correspondence to Amir Muhammad Afzal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

It is confirmed that the submitted work should be original and should not have been published elsewhere in any form or language.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, A.M., Muzaffar, N., Iqbal, M.W. et al. Exploring the charge storage mechanism in high-performance Co@MnO2-based hybrid supercapacitors using Randles–Ševčík and Dunn’s models. J Appl Electrochem 54, 65–76 (2024). https://doi.org/10.1007/s10800-023-01939-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01939-3

Keywords

Navigation