Skip to main content
Log in

Effect of Ag nanoparticles on microstructure evolution, hardness, and bismuth segregation of SnBi/Cu joint

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new type of lead-free composite solder has been prepared by adding Ag nanoparticles in Sn58Bi solder paste. The effect of Ag nanoparticles on the microstructure, hardness, and growth evolution behavior of interfacial intermetallic compounds (IMC) layer and bismuth segregation of Sn58Bi/Cu solder joint were investigated. It was found that the Bi-rich phases in solder were obviously refined and had more uniform distribution owing to the addition of Ag nanoparticles. The hardness of composite solder was still higher than that of Sn58Bi solder after enduring high-temperature aging. Due to the addition of Ag nanoparticles, the atomic diffusion coefficient in compounds reduced. As a result, the growth of IMC layer was suppressed. The addition of Ag nanoparticles had no obvious effect on the segregation of Bi atoms near the Cu/Cu3Sn interface. To investigate the mechanism of Bi segregation, deep corrosion and aging experiments were designed. The results showed that the Bi particles near the Cu/Cu3Sn interface originated from Cu6Sn5 layer during high-temperature aging. Bi atoms in the Cu6Sn5 layer precipitated in the transformation process from Cu6Sn5 to Cu3Sn, in which Ag nanoparticles were not included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

References

  1. X. Long, C.H. Lu, Y.T. Su, Y.C. Dai, Eng. Fail. Ana. 148, 107228 (2023)

    Article  Google Scholar 

  2. D.H. Lee, M.S. Jeong, J.W. Yoon, J. Mater. Sci. : Mater. Electron. 33, 7983 (2022)

    CAS  Google Scholar 

  3. M. Yamamoto, I. Shohji, T. Kobayashi, K. Mitsui, H. Watanabe, Materials. 14, 3799 (2021)

    Article  CAS  Google Scholar 

  4. Y. Li, K.M. Luo, A.B.Y. Lim, Z. Chen, F.S. Wu, Y.C. Chan, Mat. Sci. Eng. A-Struct. 669, 291 (2016)

    Article  CAS  Google Scholar 

  5. X. Long, Y. Guo, Y.T. Su, K.S. Siow, C.T. Chen, Int. J. Mech. Sci. 244, 108087 (2023)

    Article  Google Scholar 

  6. A.S.M. AHaseeb, M.M. Arafat, S.L. Tay, Y.M. Leong. J. Electron. Mater. 46, 5503 (2017)

    Article  Google Scholar 

  7. C. Chen, L. Zhang, X. Wang, X. Lu, L.L. Gao, M. Zhao, S.J. Zhong, J. Mater. Sci: Mater. Electron. 34, 656 (2023)

    CAS  Google Scholar 

  8. P.D. Sonawwanay, V.K.B. Raja, M.A.A. Salleh, N.B. Muhammad, S.F. Nazri, M. Gupta, J. Mater. Sci: Mater. Electron. 32, 21709 (2021)

    CAS  Google Scholar 

  9. M.B. Kelly, S. Niverty, N. Chawla, Acta Mater. 189, 118 (2020)

    Article  CAS  Google Scholar 

  10. J.H. Bang, D.Y. Yu, Y.H. Ko, M.S. Kim, H. Nishikawa, C.W. Lee, J. Alloys Compd. 728, 992 (2017)

    Article  CAS  Google Scholar 

  11. P. Zhang, S.B. Xue, J.H. Wang, P. Xue, S.J. Song, W.M. Long, Appl. Sci. -Basel. 9, 2044 (2019)

    Article  CAS  Google Scholar 

  12. F.Q. Hu, Q.K. Zhang, J.J. Jiang, Z.L. Song, Mater. Lett. 214, 142 (2018)

    Article  CAS  Google Scholar 

  13. Z. Zhang, K. Ma, K. Liang, F. Dong, Z.F. Qian, S. Liu, Eng. Fail. Ana. 143, 106824 (2023)

    Article  CAS  Google Scholar 

  14. Y.J. Seo, M.H. Heo, E.C. Noh, J.W. Yoon, J. Mater. Sci: Mater. Electron. 34, 1318 (2023)

    CAS  Google Scholar 

  15. L.S. Kamaruzzaman, Solder surf. Mt. Tech. 34, 300 (2022)

    Article  Google Scholar 

  16. C.Y. Cai, J.F. Xu, H.Y. Wang, S.B. Park, Microelectron. Reliab. 119, 114065 (2021)

    Article  CAS  Google Scholar 

  17. Y. Liu, J. Chang, Y.X. Xue, R.X. Cao, H.X. Li, S. Zheng, X.H. Zeng, J. Mater. Sci. : Mater. Electron. 33, 8270 (2022)

    CAS  Google Scholar 

  18. L. Yang, L.C. Zhu, Y.C. Zhang, P. Liu, N. Zhang, S.Y. Zhou, L.C. Jiang, Mater. Sci. Tech-Lond. 34, 992 (2018)

    Article  CAS  Google Scholar 

  19. C. Dong, H.R. Ma, H.T. Ma, Y.P. Wang, Mater. Chem. Phys. 296, 127228 (2023)

    Article  CAS  Google Scholar 

  20. Y. Liu, B.Q. Ren, M. Zhou, X.H. Zeng, F.L. Sun, J. Mater. Sci. : Mater. Electron. 31, 8258 (2020)

    CAS  Google Scholar 

  21. X.Z. Li, Y. Ma, W. Zhou, P. Wu, Mat. Sci. Eng. A-Struct. 684, 328 (2017)

    Article  CAS  Google Scholar 

  22. Q.K. Z.Wang, Y.X. Zhang, Z.L. Chen, Song, J. Mater. Sci. : Mater. Electron. 30, 18524 (2019)

    Google Scholar 

  23. H. Liu, W.B. Guo, H.T. Xue, X.M. Zhang, J. Electron. Mater. 49, 6754 (2020)

    Article  CAS  Google Scholar 

  24. M.Z. Yahaya, M.F.M. Nazeri, S. Kheawhom, B. lll, A. Skwarek, A.A. Mohamad, Mater. Res. Express. 7, 016583 (2020)

    Article  CAS  Google Scholar 

  25. S.Q. Zhou, C.H. Yang, S.K. Lin, A.N. AlHazaa, O. Mokhtari, X.D. Liu, H. Nishikawa, Hiroshi, Mat. Sci. Eng. A-Struct. 744, 560 (2019)

    Article  CAS  Google Scholar 

  26. X.W. Zeng, Y.C. Liu, J.K. Zhang, Y. Liu, X.W. Hu, X.X. Jiang, J. Mater. Sci. : Mater. Electron. 31, 16437 (2020)

    CAS  Google Scholar 

  27. Y. Li, Y.C. Chan, J. Alloy Compd. 645, 566 (2015)

    Article  CAS  Google Scholar 

  28. J. Yang, Q.K. Zhang, Z.L. Song, J. Electron. Mater. 50, 283 (2021)

    Article  CAS  Google Scholar 

  29. W.B. Zhu, W.W. Zhang, W. Zhou, P. Wu, J. Alloy Compd. 789, 805 (2019)

    Article  CAS  Google Scholar 

  30. Y.H. Wei, Y.X. Liu, L. Zhang, X.C. Zhao, Mater. Charact. 175, 111089 (2021)

    Article  CAS  Google Scholar 

  31. L.M. Yang, S.Y. Quan, C. Liu, G.M. Shi, Mater. Lett. 253, 191 (2019)

    Article  CAS  Google Scholar 

  32. C.Z. Liu, J.J. Wang, M.W. Zhu, X.M. Liu, T.N. Lu, J.R. Yang, J. Electron. Mater. 50, 258 (2021)

    Article  CAS  Google Scholar 

  33. H. Kim, K. Tu, Phys. Rev. B 53(23), 16027 (1996)

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the Scientific research project of the Educational Department of Liaoning Province under Grant. LJKZ0158.

Author information

Authors and Affiliations

Authors

Contributions

LY contributed to Methodology, Writing of the Original Draft, and Writing, Reviewing, and Editing of the manuscript. SM analyzed the data. GM and TH conducted partial experiments.

Corresponding author

Correspondence to Linmei Yang.

Ethics declarations

Competing interests

The authors declare they have no relevant financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Ma, S., Mu, G. et al. Effect of Ag nanoparticles on microstructure evolution, hardness, and bismuth segregation of SnBi/Cu joint. J Mater Sci: Mater Electron 34, 2051 (2023). https://doi.org/10.1007/s10854-023-11510-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11510-7

Navigation