Skip to main content
Log in

Growth mechanism of intermetallic compound and mechanical properties of nickel (Ni) nanoparticle doped low melting temperature tin–bismuth (Sn–Bi) solder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper investigates the effects of Ni nanoparticles on the formation of intermetallic compound (IMC) layers and mechanical properties of low melting temperature Sn–58Bi (wt%) based solders on copper (Cu) substrate. At the initial reaction for the plain Sn–Bi solder/Cu substrate system, an island-shaped Cu6Sn5 IMC layer was found to adhere at the substrate surface. A very thin Cu3Sn IMC layer was also observed between the Cu6Sn5 IMC layer and Cu substrate as the reaction time increased. However, in the composite solders doped with Ni nanoparticles, a scallop-shaped ternary (Cu, Ni)–Sn IMC layer appeared at the interface without Cu3Sn IMC layer. In the solder ball region, the Bi phase with bright contrast was homogeneously distributed in the β-Sn matrix. After adding the Ni nanoparticles, an additional very fine Sn–Ni IMC particle was found to have been distributed in the β-Sn matrix. The IMC layer thicknesses were increased with the reaction time and temperature. However, the IMC growth behavior of composite solder was slower than that of the plain solder system. Furthermore, the mechanical properties of the composite solder exhibited higher values than that of the plain Sn–Bi solder due to the strengthening effect of fine Sn–Ni IMC particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Kanchanomai, W. Limtrakarn, Y. Mutoh, Mech. Mater. 37, 1166 (2005)

    Article  Google Scholar 

  2. K.K. Mohan, V. Kripesh, A.A.O. Tay, J. Alloys Compd. 455, 148 (2008)

    Article  Google Scholar 

  3. F. Frongia, M. Pilloni, A. Scano, A. Ardu, C. Cannas, A. Musinu, G. Borzone, S. Delsante, R. Novakovic, G. Ennas, J. Alloys Compd. 623, 7 (2015)

    Article  Google Scholar 

  4. A.A. El-Daly, A.M. El-Taher, S. Gouda, Mater. Des. 65, 796 (2015)

    Article  Google Scholar 

  5. A.K. Gain, L. Zhang, Y.C. Chan, J. Mater. Sci. Mater. Electron. 26, 7039 (2015)

    Article  Google Scholar 

  6. A.A. El-Daly, A.E. Hammad, G.A. Al-Ganainy, A.A. Ibrahiem, Mater. Des. 52, 966 (2013)

    Article  Google Scholar 

  7. Y. Goh, S.F. Lee, A.S.M.A. Haseeb, J. Mater. Sci. Mater. Electron. 24, 2052 (2013)

    Article  Google Scholar 

  8. A.K. Gain, Y.C. Chan, W.K.C. Yung, Mater. Sci. Eng. B 162, 92 (2009)

    Article  Google Scholar 

  9. Y. Plevachuk, W. Hoyer, I. Kaban, M. Kohler, R. Novakovic, J. Mater. Sci. 45, 2051 (2010)

    Article  Google Scholar 

  10. M. Kamal, E.S. Gouda, J. Mater. Sci. Mater. Electron. 19, 81 (2008)

    Article  Google Scholar 

  11. H.R. Kotadia, P.D. Howes, S.H. Mannan, Microelectron. Reliab. 54, 1253 (2014)

    Article  Google Scholar 

  12. A.K. Gain, T. Fouzder, Y.C. Chan, W.K.C. Yung, J. Alloys Compd. 509, 3319 (2011)

    Article  Google Scholar 

  13. I.E. Anderson, J. Mater. Sci. Mater. Electron. 18, 55 (2007)

    Article  Google Scholar 

  14. F. Gnecco, E. Ricci, S. Amore, D. Giuranno, G. Borzone, G. Zanicchi, R. Novakovic, Int. J. Adhes. Adhes. 27, 409 (2007)

    Article  Google Scholar 

  15. L. Liu, P. Wu, W. Zhou, Microelectron. Reliab. 54, 259 (2014)

    Article  Google Scholar 

  16. K.K. Mohan, V. Kripesh, L. Shen, K. Zeng, A.A.O. Tay, Mater. Sci. Eng. A 423, 57 (2006)

    Article  Google Scholar 

  17. A.K. Gain, Y.C. Chan, A. Sharif, W.K.C. Yung, Microelectron. Eng. 86, 2347 (2009)

    Article  Google Scholar 

  18. X. Chen, F. Xue, J. Zhou, Y. Yao, J. Alloys Compd. 633, 377 (2015)

    Article  Google Scholar 

  19. W. Dong, Y. Shi, Z. Xia, Y. Lei, F. Guo, J. Electron. Mater. 37(7), 982 (2008)

    Article  Google Scholar 

  20. J.F. Li, S.H. Mannan, M.P. Clode, D.C. Whalley, D.A. Hutt, Acta Mater. 54, 2907 (2006)

    Article  Google Scholar 

  21. L. Shen, P. Septiwerdani, Z. Chen, Mater. Sci. Eng. A 558, 253 (2012)

    Article  Google Scholar 

  22. X. Gu, K.C. Yung, Y.C. Chan, J. Mater. Sci. Mater. Electron. 21, 1090 (2010)

    Article  Google Scholar 

  23. X. Gu, Y.C. Chan, J. Electron. Mater. 37(11), 1721 (2008)

    Article  Google Scholar 

  24. L. Zhang, K.N. Tu, Mater. Sci. Eng. R 82, 1 (2014)

    Article  Google Scholar 

  25. A.K. Gain, L. Zhang, Y.C. Chan, J. Mater. Sci. Mater. Electron. 26, 7039 (2015)

    Article  Google Scholar 

  26. M.J. Esfandyarpour, R. Mahmudi, Mater. Sci. Eng. A 530, 402 (2011)

    Article  Google Scholar 

  27. A.K. Gain, L. Zhang, J Alloys Compd. 617, 779 (2014)

    Article  Google Scholar 

  28. T. Fouzder, Y.C. Chan, D.K. Chan, J. Mater. Sci. Mater. Electron. 25, 5375 (2014)

    Article  Google Scholar 

  29. G. Chen, F. Wu, C. Liu, W. Xia, H. Liu, Mater. Sci. Eng. A 636, 484 (2015)

    Article  Google Scholar 

  30. A.A. El-Daly, A.M. El-Taher, T.R. Dalloul, J. Alloys Compd. 587, 32 (2014)

    Article  Google Scholar 

  31. A.K. Gain, Y.C. Chan, Intermetallic 29, 48 (2012)

    Article  Google Scholar 

  32. T. Ventura, C.M. Gourlay, K. Nogita, T. Nishimura, M. Rappaz, A.K. Dahle, J. Electron. Mater. 37(1), 32 (2008)

    Article  Google Scholar 

  33. T. Fouzder, Q. Li, Y.C. Chan, D.K. Chan, J. Mater. Sci. Mater. Electron. 25, 4012 (2014)

    Article  Google Scholar 

  34. N. Iqbal, P. Xue, B. Wang, Y. Li, Int. J. Impact Eng. 74, 126 (2014)

    Article  Google Scholar 

  35. T.H. Chuang, H.F. Wu, J. Electron. Mater. 40(1), 71 (2011)

    Article  Google Scholar 

  36. L. Wang, D.Q. Yu, J. Zhao, M.L. Huang, Mater. Lett. 56, 1039 (2002)

    Article  Google Scholar 

  37. E.M.N. Ervina, N.I. Siti, Trans. Electr. Electron. Mater. 16(3), 112 (2015)

    Article  Google Scholar 

  38. V. Kripesh, P.S. Teo, C.T. Chong, G. Vishwanadam, Proceedings of the 51st Electronic Components and Technology Conference, pp. 665–670, June 2001

  39. W. Peng, E. Monlevade, M.E. Marques, Microelectron. Reliab. 47, 2161 (2007)

    Article  Google Scholar 

  40. T. Fouzder, Q. Li, Y.C. Chan, D.K. Chan, J. Mater. Sci. Mater. Electron. 25, 2529 (2014)

    Article  Google Scholar 

  41. S.M.L. Nai, J. Wei, M. Gupta, J. Alloys Compd. 473, 100 (2009)

    Article  Google Scholar 

  42. B. Li, Y.W. Shi, Y.P. Lei, F. Guo, Z.D. Xia, B. Zong, J. Electron. Mater. 34(3), 217 (2005)

    Article  Google Scholar 

  43. J.H. Kim, Y.C. Lee, S.M. Lee, S.B. Jung, Microelectron. Eng. 120, 77 (2014)

    Article  Google Scholar 

  44. Z. Huang, R.E. Jones, A. Jain, Microelectron. Eng. 122, 46 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by The University of New South Wales (UNSW) for the project InfoEd Ref: RG124326.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asit Kumar Gain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gain, A.K., Zhang, L. Growth mechanism of intermetallic compound and mechanical properties of nickel (Ni) nanoparticle doped low melting temperature tin–bismuth (Sn–Bi) solder. J Mater Sci: Mater Electron 27, 781–794 (2016). https://doi.org/10.1007/s10854-015-3817-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3817-2

Keywords

Navigation