Skip to main content
Log in

Significantly enhanced ductility of Sn–57Bi–1Ag alloy induced by microstructure modulation from in addition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Aiming to solve the intrinsic brittleness of Sn–Bi solder alloy, the effects of In element on the microstructure evolution, mechanical and soldering properties were systematically investigated in Sn–57Bi–1Ag-based alloy. It was found that the addition of In could fragment the reticular Bi-rich phase and increase the content of β-Sn phase in the Sn–(57 − x)Bi–1Ag–xIn alloy, which significantly improved the fracture elongation of the In-containing solder alloy. The elongation of Sn–56.0Bi–1Ag–1.0In reached 68.51%, which was 2.3 times that of Sn–57Bi–1Ag (~ 29.68%). What’s more, the fracture mechanism of the alloy changes from brittle fracture to mixed ductile-brittle fracture with the addition of In element, implying a significant progress in solving the brittleness problem of Sn–Bi solder alloy. Meanwhile, compared to Sn–57Bi–1Ag, the lower melting point and solidification temperature of the In-containing solder alloys improved the solderability, which enhances the spreading rate of alloy and results in a maximum spreading rate of 72.00% for the Sn–56.0Bi–1Ag–1.0In. This work provides a valuable guidance for industrial production of solder alloys as it simultaneously improved both the solderability and the ductility of Sn–Bi-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. C.J. Lee, K.D. Min, H.J. Park, S.-B. Jung, Mechanical properties of Sn-58 wt% Bi solder containing Ag-decorated MWCNT with thermal aging tests. J. Alloys Compd. 820, 153077 (2020). https://doi.org/10.1016/j.jallcom.2019.153077

    Article  CAS  Google Scholar 

  2. Y.-W. Yen, P.-H. Tsai, Y.-K. Fang, S.-C. Lo, Y.-P. Hsieh, C. Lee, Interfacial reactions on Pb-free solders with Au/Pd/Ni/Cu multilayer substrates. J. Alloys Compd. 503, 25–30 (2010). https://doi.org/10.1016/j.jallcom.2010.04.241

    Article  CAS  Google Scholar 

  3. J.W. Yoon, S.W. Kim, S.B. Jung, Interfacial reaction and mechanical properties of eutectic Sn–0.7Cu/Ni BGA solder joints during isothermal long-term aging. J. Alloys Compd. 391, 82–89 (2005). https://doi.org/10.1016/j.jallcom.2004.09.001

    Article  CAS  Google Scholar 

  4. M. Mueller, S. Schindler, K.-J. Wolter, S. Wiese, I. Panchenko, Determination of melting and solidification temperatures of Sn–Ag–Cu solder spheres by infrared thermography. Thermochim. Acta 714, 179245 (2022). https://doi.org/10.1016/j.tca.2022.179245

    Article  CAS  Google Scholar 

  5. R.-D. Wang, Q. Hu, S.-M. Zhang, F.-W. Zhang, C.-T. Lu, Z.-G. Wang, Properties of (Fe–B)-doped Sn–1.0Ag–0.5Cu solders prepared by mechanical alloying. Rare Met. 38, 665–674 (2019). https://doi.org/10.1007/s12598-019-01248-9

    Article  CAS  Google Scholar 

  6. L. Sun, M.H. Chen, L. Zhang, Microstructure evolution and grain orientation of IMC in Cu–Sn TLP bonding solder joints. J. Alloys Compd. 786, 677–687 (2019). https://doi.org/10.1016/j.jallcom.2019.01.384

    Article  CAS  Google Scholar 

  7. F. Li, C. Pu, C. Li, J. Yang, Y. Jia, C. Geng, X. Zhang, Q. Bao, S. Guo, J. Yi, J. Zhang, Study on the effects of Ag addition on the mechanical properties and oxidation resistance of Sn–Zn lead-free solder alloy by high-throughput method. J. Mater. Sci.: Mater. Electron. (2023). https://doi.org/10.1007/s10854-022-09756-8

    Article  Google Scholar 

  8. F. Wang, X. Wang, Z. Lv, C. Hang, H. Chen, M. Li, A novel antioxidant and low-temperature Sn–Zn solder paste based on Zn@Sn core–shell structure. Mater. Today Commun. 31, 103356 (2022). https://doi.org/10.1016/j.mtcomm.2022.103356

    Article  CAS  Google Scholar 

  9. C. Geng, Y. Jia, X. Ma, Y. Jia, Y. Mu, G. Wang, C. Li, J. Peng, Q. Bao, Mechanical properties and oxidation resistance of Sn–Zn–xCu (2.3 ≤ x ≤ 20.2) solder alloys prepared by high-throughput strategy. Manuf. Lett. 27, 47–52 (2021). https://doi.org/10.1016/j.mfglet.2020.11.005

    Article  Google Scholar 

  10. J.C. Liu, G. Zhang, Z.H. Wang, J.S. Ma, K. Suganuma, Thermal property, wettability and interfacial characterization of novel Sn–Zn–Bi–In alloys as low-temperature lead-free solders. Mater. Des. 84, 331–339 (2015). https://doi.org/10.1016/j.matdes.2015.06.148

    Article  CAS  Google Scholar 

  11. J.X. Hu, N. Su, X.M. Wang, F.C. Yin, X.M. Ouyang, Experimental investigation and thermodynamic calculation of the Co–Sn–Bi ternary system. CALPHAD 77, 102404 (2022). https://doi.org/10.1016/j.calphad.2022.102404

    Article  CAS  Google Scholar 

  12. T. Yang, X. Zhao, Z. Xiong, W. Tan, Y. Wei, C. Tan, X. Yu, Y. Wang, Improvement of microstructure and tensile properties of Sn–Bi–Ag alloy by heterogeneous nucleation of β-Sn on Ag3Sn. Mater. Sci. Eng. A 785, 139372 (2020). https://doi.org/10.1016/j.msea.2020.139372

    Article  CAS  Google Scholar 

  13. Y. Liu, K.N. Tu, Low melting point solders based on Sn, Bi, and in elements. Mater. Today Adv. 8, 100115 (2020). https://doi.org/10.1016/j.mtadv.2020.100115

    Article  Google Scholar 

  14. F. Wang, H. Chen, Y. Huang, L. Liu, Z. Zhang, Recent progress on the development of Sn–Bi based low-temperature Pb-free solders. J. Mater. Sci. Mater. Electron. 30, 3222–3243 (2019). https://doi.org/10.1007/s10854-019-00701-w

    Article  CAS  Google Scholar 

  15. Y. Hirata, C.-. Yang, S.-. Lin, H. Nishikawa, Improvements in mechanical properties of Sn–Bi alloys with addition of Zn and in. Mater. Sci. Eng. A 813, 141131 (2021). https://doi.org/10.1016/j.msea.2021.141131

    Article  CAS  Google Scholar 

  16. S.T. Oh, J.H. Lee, Microstructural, wetting, and mechanical characteristics of Sn–57.6Bi–0.4Ag alloys doped with metal–organic compounds. Electron. Mater. Lett. 10, 473–478 (2014). https://doi.org/10.1007/s13391-014-8002-x

    Article  CAS  Google Scholar 

  17. Y.Y. Shiue, T.H. Chuang, Effect of La addition on the interfacial intermetallics and bonding strengths of Sn–58Bi solder joints with Au/Ni/Cu pads. J. Alloys Compd. 491, 610–617 (2010). https://doi.org/10.1016/j.jallcom.2009.11.017

    Article  CAS  Google Scholar 

  18. H.R. Kotadia, P.D. Howes, S.H. Mannan, A review: on the development of low melting temperature Pb-free solders. Microelectron. Reliab. 54, 1253–1273 (2014). https://doi.org/10.1016/j.microrel.2014.02.025

    Article  CAS  Google Scholar 

  19. B.L. Silva, M.G.C. Xavier, A. Garcia, J.E. Spinelli, Cu and Ag additions affecting the solidification microstructure and tensile properties of Sn–Bi lead-free solder alloys. Mater. Sci. Eng. A 705, 325–334 (2017). https://doi.org/10.1016/j.msea.2017.08.059

    Article  CAS  Google Scholar 

  20. C. Peng, J. Shen, W. Xie, J. Chen, C. Wu, X. Wang, Influence of minor Ag nano-particles additions on the microstructure of Sn30Bi0.5Cu solder reacted with a Cu substrate. J. Mater. Sci. Mater. Electron. 22, 797–806 (2010). https://doi.org/10.1007/s10854-010-0214-8

    Article  CAS  Google Scholar 

  21. B.-S. Xu, L.-K. Zang, Z.-F. Yuan, Y. Wu, Z. Zhou, Dissolutive wetting process and interfacial characteristic of molten Sn–17Bi–0.5Cu alloy on copper substrate. Rare Met. 32, 537–543 (2013). https://doi.org/10.1007/s12598-013-0167-1

    Article  CAS  Google Scholar 

  22. J.L. Paixão, L.F. Gomes, R.V. Reyes, A. Garcia, J.E. Spinelli, B.L. Silva, Microstructure characterization and tensile properties of directionally solidified Sn-52 wt% Bi-1 wt% sb and Sn-52 wt% Bi-2 wt% sb alloys. Mater. Charact. 166, 110445 (2020). https://doi.org/10.1016/j.matchar.2020.110445

    Article  CAS  Google Scholar 

  23. J. Shen, Y.Y. Pu, H.G. Yin, Q. Tang, Effects of Cu, Zn on the wettability and shear mechanical properties of Sn–Bi-based lead-free solders. J. Electron. Mater. 44, 532–541 (2014). https://doi.org/10.1007/s11664-014-3460-3

    Article  CAS  Google Scholar 

  24. X. Chen, F. Xue, J. Zhou, Y. Yao, Effect of in on microstructure, thermodynamic characteristic and mechanical properties of Sn–Bi based lead-free solder. J. Alloys Compd. 633, 377–383 (2015). https://doi.org/10.1016/j.jallcom.2015.01.219

    Article  CAS  Google Scholar 

  25. Q. Li, N. Ma, Y. Lei, J. Lin, H. Fu, J. Gu, Characterization of low-melting-point Sn–Bi–In lead-free solders. J. Electron. Mater. 45, 5800–5810 (2016). https://doi.org/10.1007/s11664-016-4366-z

    Article  CAS  Google Scholar 

  26. W. Zhu, W. Zhang, W. Zhou, P. Wu, Improved microstructure and mechanical properties for SnBi solder alloy by addition of Cr powders. J. Alloys Compd. 789, 805–813 (2019). https://doi.org/10.1016/j.jallcom.2019.03.027

    Article  CAS  Google Scholar 

  27. L. Yang, W. Zhou, Y. Ma, X. Li, Y. Liang, W. Cui, P. Wu, Effects of Ni addition on mechanical properties of Sn58Bi solder alloy during solid-state aging. Mater. Sci. Eng. A 667, 368–375 (2016). https://doi.org/10.1016/j.msea.2016.05.015

    Article  CAS  Google Scholar 

  28. Y. Li, K. Luo, A.B.Y. Lim, Z. Chen, F. Wu, Y.C. Chan, Improving the mechanical performance of Sn57.6Bi0.4Ag solder joints on Au/Ni/Cu pads during aging and electromigration through the addition of tungsten (W) nanoparticle reinforcement. Mater. Sci. Eng. A 669, 291–303 (2016). https://doi.org/10.1016/j.msea.2016.05.092

    Article  CAS  Google Scholar 

  29. Y.-C. Huang, S.-W. Chen, Effects of Co alloying and size on solidification and interfacial reactions in Sn-57 wt.%Bi–(Co)/Cu couples. J. Electron. Mater. 40, 62–70 (2010). https://doi.org/10.1007/s11664-010-1386-y

    Article  CAS  Google Scholar 

  30. J. Shen, C. Wu, S. Li, Effects of rare earth additions on the microstructural evolution and microhardness of Sn30Bi0.5Cu and Sn35Bi1Ag solder alloys. J. Mater. Sci. Mater. Electron. 23, 156–163 (2011). https://doi.org/10.1007/s10854-011-0566-8

    Article  CAS  Google Scholar 

  31. R.M. Shalaby, Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi–Sn based lead-free solder alloys. Mater. Sci. Eng. A 560, 86–95 (2013). https://doi.org/10.1016/j.msea.2012.09.038

    Article  CAS  Google Scholar 

  32. F.Q. Hu, Q.K. Zhang, J.J. Jiang, Z.L. Song, Influences of Ag addition to Sn–58Bi solder on SnBi/Cu interfacial reaction. Mater. Lett. 214, 142–145 (2018). https://doi.org/10.1016/j.matlet.2017.11.127

    Article  CAS  Google Scholar 

  33. B.-G. Park, W.-R. Myung, C.-J. Lee, S.-B. Jung, Mechanical, electrical, and thermal reliability of Sn–58 wt%Bi solder joints with Ag-decorated MWCNT for LED package component during aging treatment. Compos. B Eng. (2020). https://doi.org/10.1016/j.compositesb.2019.107617

    Article  Google Scholar 

  34. R.K. SHIUE, L.W. TSAY, C.L.L. LIN, J.L. OU, A study of Sn–Bi–Ag–(In) lead-free solders. J. Mater. Sci. 38, 1269–1279 (2003). https://doi.org/10.1023/A:1022822127193

    Article  CAS  Google Scholar 

  35. N. Jiang, L. Zhang, L.L. Gao, X.G. Song, H. Peng, Recent advances on SnBi low-temperature solder for electronic interconnections. J. Mater. Sci. Mater. Electron. 32, 22731–22759 (2021). https://doi.org/10.1007/s10854-021-06820-7

    Article  CAS  Google Scholar 

  36. Y.Y. Chiang, R. Cheng, A.T. Wu, Effects on undercooling and interfacial reactions with Cu substrates of adding Bi and in to Sn–3Ag solder. J. Electron. Mater. 39, 2397–2402 (2010). https://doi.org/10.1007/s11664-010-1347-5

    Article  CAS  Google Scholar 

  37. Z.H. Zhou, Y.C. Liu, M.J. Dong, Z.M. Gao, H.J. Li, Microstructure and interface evolution of Sn–2.5Bi–1.4In–1Zn–0.3Ag/Cu joint during isothermal aging. J. Mater. Sci. Mater. Electron. 24, 4122–4128 (2013). https://doi.org/10.1007/s10854-013-1370-4

    Article  CAS  Google Scholar 

  38. R.T.J.I. Kivilahti, International symposium on advanced packaging materials (1998), p. 170–174

  39. S.K. SEO, M.G. CHO, H.M. LEE, W.K. CHOI, Comparison of Sn2.8Ag20In and Sn10Bi10In solders for intermediate-step soldering. J. Electron. Mater. 35, 1975–1981 (2006). https://doi.org/10.1007/s11664-006-0302-y

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank the financial supports of the Science and Technology Major Project of Yunnan Province (Grant No. 2019ZE001-3, 202202AB080001), the National Natural Science Foundation of China (Grant No. 52061021), and the Young and middle–aged academic and technical leaders reserve talent project of Yunnan Province (Grant No. 202005AC160039).

Author information

Authors and Affiliations

Authors

Contributions

KX: Data curation, Writing—original draft. CL: Writing—review & editing. PG: Methodology. JQ: Resources. SG: Conceptualization. LZ: Investigation. JZ: Supervision. QH: Visualization. JP: Validation. JY: Project administration.

Corresponding authors

Correspondence to C. J. Li or J. B. Peng.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies involving humans and animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, K.X., Li, C.J., Gao, P. et al. Significantly enhanced ductility of Sn–57Bi–1Ag alloy induced by microstructure modulation from in addition. J Mater Sci: Mater Electron 34, 1551 (2023). https://doi.org/10.1007/s10854-023-10946-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10946-1

Navigation