Skip to main content

Advertisement

Log in

Performance evaluation of Bi2O3@GO and Bi2O3@rGO composites electrode for supercapacitor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Supercapacitors have been attracting a remarkable research interest due to their outstanding intrinsic properties, such as high electrical response, great durability, and a wide range of operating temperature and voltage. In this work, the synthesis and evaluation of the electrochemical performances of graphene oxide doped with Bismuth oxide (Bi2O3@GO) and reduced graphene oxide doped with Bismuth oxide (Bi2O3@rGO) without any binder material were carried out using a low concentration (1.0 M) of KOH electrolyte. The solvothermal method of nanomaterial synthesis was employed. The produced nanomaterial was studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and electrochemical characterizations. An improved performance was recorded by the electrode made of Bi2O3@rGO, which achieved 560 Fg−1 specific capacitance at 5 mVs−1 scan rate; 28 Whkg−1 and 17 kWkg−1 energy and power densities, respectively. The electrode also retained 99% of its capacitance after 3000 galvanostatic charge–discharge (GCD) cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data pertaining to this report can be provided on a reasonable request.

References

  1. T.Z. Ang, M. Salem, M. Kamarol, H.S. Das, M.A. Nazari, N. Prabaharan, A comprehensive study of renewable energy sources: classifications, challenges and suggestions. Energy Strategy Rev. 43, 100939 (2022)

    Article  Google Scholar 

  2. A. Muzaffar, M.B. Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: design, fabrication. Renew. Sustain. Energy Rev. 101, 123 (2019)

    Article  CAS  Google Scholar 

  3. S.M. Mbam, R.M. Obodo, A.C. Nwanya, A.B.C. Ekwealor, I. Ahmad, F.I. Ezema, Research progress in synthesis and electrochemical performance of bismuth oxide, in Electrode materials for energy storage and conversion. ed. by M.A. Kebede, F.I. Ezema (CRC Press, Boca Raton, 2021), pp.379–395

    Chapter  Google Scholar 

  4. A.C. Nwanya, D. Obi, K.I. Ozoemena, R.U. Osuji, C. Awada, A. Ruediger, F.I. Ezema, Facile synthesis of nanosheet-like CuO film and its potential application as a high-performance pseudocapacitor electrode. Electrochimica Acta. 198, 220–230 (2016)

    Article  CAS  Google Scholar 

  5. Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016)

    Article  CAS  Google Scholar 

  6. A. Berrueta, A. Ursúa, I. San Martín, A. Eftekhari, P. Sanchis, Supercapacitors: electrical characteristics, modeling, applications, and future trends. IEEE Access 7, 50869–50896 (2019)

    Article  Google Scholar 

  7. H.E. Nsude, K.U. Nsude, G.M. Whyte, R.M. Obodo, C. Iroegbu, M. Maaza, F.I. Ezema, Green synthesis of CuFeS 2 nanoparticles using mimosa leaves extract for photocatalysis and supercapacitor applications. J. Nanopart. Res. 22(11), 1–13 (2020)

    Article  Google Scholar 

  8. Y. Huang, Y. Zeng, M. Yu, P. Liu, Y. Tong, F. Cheng, X. Lu, Recent smart methods for achieving high-energy asymmetric supercapacitors. Small Methods 2(2), 1700230 (2018)

    Article  Google Scholar 

  9. Y. Wu, C. Cao, The way to improve the energy density of supercapacitors: progress and perspective. Sci. China Mater. 61(12), 1517–1526 (2018)

    Article  CAS  Google Scholar 

  10. M.F. El-Kady, Y. Shao, R.B. Kaner, Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 1(7), 1–14 (2016)

    Article  Google Scholar 

  11. Q. Wang, J. Yan, Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 9(3), 729–762 (2016)

    Article  CAS  Google Scholar 

  12. X. Zhang, Z. Xiao, X. Liu, P. Mei, Y. Yang, Redox-active polymers as organic electrode materials for sustainable supercapacitors. Renew. Sustain. Energy Rev. 147, 111247 (2021)

    Article  CAS  Google Scholar 

  13. B. De, S. Banerjee, K.D. Verma, T. Pal, P.K. Manna, K.K. Kar, Transition metal oxides as electrode materials for supercapacitors, in Handbook of Nanocomposite Supercapacitor Materials II. (Cham, Springer, 2020), pp.89–111

    Chapter  Google Scholar 

  14. P. E. Lokhande and U. S. Chavan, 2019 “Conductive Polymer-Derived Materials for Supercapacitor.” In: Rajender Boddula, Mohammad Faraz Ahmer (eds) Conducting Polymers-Based Energy Storage Materials, Taylor & Francis, Milton Park. pp. 123–134

  15. S.D. Dhas, P.S. Maldar, M.D. Patil, A.B. Nagare, M.R. Waikar, R.G. Sonkawade, A.V. Moholkar, Synthesis of NiO nanoparticles for supercapacitor application as an efficient electrode material. Vacuum 181, 109646 (2020)

    Article  CAS  Google Scholar 

  16. U.S. Chavan, P.E. Lokhande, S. Bhosale, Nickel hydroxide nanosheets grown on nickel foam for high performance supercapacitor applications. Mater. Technol. 37(8), 728–734 (2022)

    Article  CAS  Google Scholar 

  17. T. Zhu, S.J. Zheng, Y.G. Chen, J. Luo, H.B. Guo, Y.E. Chen, Improvement of hydrothermally synthesized MnO2 electrodes on Ni foams via facile annealing for supercapacitor applications. J. Mater. Sci. 49(17), 6118–6126 (2014)

    Article  CAS  Google Scholar 

  18. B. Pant, M. Park, S.J. Park, TiO2 NPs assembled into a carbon nanofiber composite electrode by a one-step electrospinning process for supercapacitor applications. Polymers 11(5), 899 (2019)

    Article  CAS  Google Scholar 

  19. Y. Xie, C. Yao, Electrochemical performance of RuO2–TiO2 nanotube hybrid electrode material. Mater. Res. Express 6(12), 125550 (2020)

    Article  Google Scholar 

  20. E. Niknam, H. Naffakh-Moosavy, S.E. Moosavifard, M.G. Afshar, Multi-shelled bimetal V-doped Co3O4 hollow spheres derived from metal organic framework for high performance supercapacitors. J. Energy Storage 103508, 44 (2021)

    Google Scholar 

  21. C.Q. Yi, J.P. Zou, H.Z. Yang, L.E.N.G. Xian, Recent advances in pseudocapacitor electrode materials: transition metal oxides and nitrides. Trans. Nonferrous Metals Soc. China 28(10), 1980–2001 (2018)

    Article  CAS  Google Scholar 

  22. Y. Qiu, H. Fan, X. Chang, H. Dang, Q. Luo, Z. Cheng, Novel ultrathin Bi2O3 nanowires for supercapacitor electrode materials with high performance. Appl. Surf. Sci. 434, 16–20 (2018)

    Article  CAS  Google Scholar 

  23. N.M. Shinde, Q.X. Xia, J.M. Yun, P.V. Shinde, S.M. Shaikh, R.K. Sahoo, K.H. Kim, Ultra-rapid chemical synthesis of mesoporous Bi2O3 micro-sponge-balls for supercapattery applications. Electrochim. Acta. 296, 308–316 (2019)

    Article  CAS  Google Scholar 

  24. N.M. Shinde, Q.X. Xia, J.M. Yun, R.S. Mane, K.H. Kim, Polycrystalline and mesoporous 3-D Bi2O3 nanostructured negatrodes for high-energy and power-asymmetric supercapacitors: superfast room-temperature direct wet chemical growth. ACS Appl. Mater. Interf. 10(13), 11037–11047 (2018)

    Article  CAS  Google Scholar 

  25. H.W. Wang, Z.A. Hu, Y.Q. Chang, Y.L. Chen, Z.Q. Lei, Z.Y. Zhang, Y.Y. Yang, Facile solvothermal synthesis of a graphene nanosheet–bismuth oxide. Electrochim. Acta 55(28), 8974–8980 (2010)

    Article  CAS  Google Scholar 

  26. M. Ciszewski, A. Mianowski, P. Szatkowski, G. Nawrat, J. Adamek, Reduced graphene oxide–bismuth oxide composite as electrode material for supercapacitors. Ionics 21(2), 557–563 (2015)

    Article  CAS  Google Scholar 

  27. J. Wang, H. Zhang, M.R. Hunt, A. Charles, J. Tang, O. Bretcanu, L. Šiller, Synthesis and characterisation of reduced graphene oxide/bismuth composite for electrodes in electrochemical energy storage devices. ChemSusChem 10(2), 363 (2017)

    Article  CAS  Google Scholar 

  28. S. Liu, Y. Wang, Z. Ma, Bi2O3 with reduced graphene oxide composite as a supercapacitor electrode. Int. J. Electrochem. Sci. 13, 12256–12265 (2018)

    Article  CAS  Google Scholar 

  29. A. Deepi, G. Srikesh, A.S. Nesaraj, Electrochemical performance of Bi2O3 decorated graphene nano composites for supercapacitor applications. Nano-Struct. Nano-Objects 15, 10–16 (2018)

    Article  CAS  Google Scholar 

  30. W.D. Yang, Y.J. Lin, Preparation of rGO/Bi2O3 composites by hydrothermal synthesis for supercapacitor electrode. J. Electr. Eng. 70(7), 101–106 (2019)

    Google Scholar 

  31. J. Li, S. Huang, J. Gu, Q. Wu, D. Chen, C. Zhou, Facile synthesis of well-dispersed Bi2O3 nanoparticles and rGO as negative electrode for supercapacitor. J. Nanopart. Res. 21(3), 1–8 (2019)

    Article  Google Scholar 

  32. S. Kumagai, K. Mukaiyachi, D. Tashima, Rate and cycle performances of supercapacitors with different electrode thickness using the non-aqueous. J. Energy Storage 3, 10–17 (2015)

    Article  Google Scholar 

  33. R.M. Obodo, A.C. Nwanya, C. Iroegbu, B.A. Ezekoye, A.B.C. Ekwealor, I.E.F.I. Ahmad, Effects of swift copper (Cu2+) ion irradiation on structural, optical and electrochemical properties of Co3O4-CuO-MnO2/GO nanocomposites powder. Adv. Powder Technol. 31(4), 1728–1735 (2020)

    Article  CAS  Google Scholar 

  34. P.E. Lokhande, U.S. Chavan, “Inorganic electrolytes in supercapacitor,” in Supercapacitor technology: materials, processes and architectures (Materials Research Forum LLC Venue, USA, 2019), pp.11–30

    Google Scholar 

  35. P.E. Lokhande, U.S. Chaven, S. Deokar, M. Ingale, S. Bhosale, S. Kale, A. Kamte, Surfactant free chemically deposited wheat spike-like nanostructure on Cu foam for supercapacitor applications. Mater. Today: Proceedings 18, 979–985 (2019)

    CAS  Google Scholar 

  36. R. Lopez-Chavez, A.K. Cuentas-Gallegos, The effect of binder in electrode materials for capacitance improvement and EDLC binder-free cell design. J. New Mater. Electrochem. Syst. 16(3), 197–202 (2013)

    Article  CAS  Google Scholar 

  37. L.Q. Mai, A. Minhas-Khan, X. Tian, K.M. Hercule, Y.L. Zhao, X. Lin, X. Xu, Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat. Commun. 4(1), 1–7 (2013)

    Article  Google Scholar 

  38. M. Karakoti, R. Jangra, S. Pandey, P.S. Dhapola, S. Dhali, S. Mahendia, N.G. Sahoo, Binder-free reduced graphene oxide as electrode material for efficient supercapacitor with aqueous and polymer electrolytes. High Performance Polym. 32(2), 175–182 (2020)

    Article  CAS  Google Scholar 

  39. N.M. Shinde, Q.X. Xia, J.M. Yun, S. Singh, R.S. Mane, K.H. Kim, A binder-free wet chemical synthesis approach to decorate nanoflowers of bismuth oxide on Ni-foam for fabricating laboratory scale potential pencil-type asymmetric supercapacitor device. Dalton Trans. 46(20), 6601–6611 (2017)

    Article  CAS  Google Scholar 

  40. S.M. Mbam, R.M. Obodo, A.C. Nwanya, A.B.C. Ekwealor, I. Ahmad, F.I. Ezema, Synthesis and electrochemical properties of graphene, in Electrode materials for energy storage and conversion. ed. by M.A. Kebede, F.I. Ezema (CRC Press, Boca Raton, 2021), pp.263–277

    Chapter  Google Scholar 

  41. S.N. Alam, N. Sharma, L. Kumar, Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 6(1), 1–18 (2017)

    Article  CAS  Google Scholar 

  42. Y. Wang, L. Jiang, D. Tang, F. Liu, Y. Lai, Characterization of porous bismuth oxide (Bi 2 O 3) nanoplates prepared by chemical bath deposition and post annealing. RSC Adv. 5(80), 65591–65594 (2015)

    Article  CAS  Google Scholar 

  43. R.M. Obodo, S.M. Mbam, D.C. Iwueke, M. Ramzan, R. Ijeh, I. Ahmad, M. Maaza, F.I. Ezema, Annealing optimization of graphitized Co3O4@CuO@NiO composite electrodes for supercapacitor applications. Energy Storage 4, e347 (2022)

    Article  CAS  Google Scholar 

  44. N. Iwashita, X-ray powder diffraction, in Materials science and engineering of carbon. ed. by M. Inagaki (Butterworth-Heinemann, Oxford, 2016), pp. 7–25

    Google Scholar 

  45. J. Yan, J. Liu, Z. Fan, T. Wei, L. Zhang, High-performance supercapacitor electrodes based on highly corrugated graphene sheets. Carbon 50(6), 2179–2188 (2012)

    Article  CAS  Google Scholar 

  46. S. Singh, R.K. Sahoo, N.M. Shinde, J.M. Yun, R.S. Mane, W. Chung, K.H. Kim, Asymmetric faradaic assembly of Bi 2 O 3 and MnO 2 for a high-performance hybrid electrochemical energy storage device. RSC Adv. 9(55), 32154–32164 (2019)

    Article  CAS  Google Scholar 

  47. J. Yang, T. Xie, C. Liu, L. Xu, Facile fabrication of dumbbell-like β-Bi2O3/graphene nanocomposites and their highly efficient photocatalytic activity. Materials 11(8), 1359 (2018)

    Article  Google Scholar 

  48. S.S. Raut, O. Bisen, B.R. Sankapal, Synthesis of interconnected needle-like Bi2O3 using successive ionic layer adsorption and reaction towards supercapacitor application. Ionics 23(7), 1831–1837 (2017)

    Article  CAS  Google Scholar 

  49. Z. A. Zulkifli, K. A. Razak and W. N. W. A. Rahman, 2018 The effect of reaction temperature on the particle size of bismuth oxide nanoparticles synthesized via hydrothermal method, In AIP Conference Proceedings

  50. M. Notarianni, J. Liu, F. Mirri, M. Pasquali, N. Motta, Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector. Nanotechnology 25(43), 435405 (2014)

    Article  Google Scholar 

  51. R.K. Mishra, G.J. Choi, Y. Sohn, S.H. Lee, J.S. Gwag, Reduced graphene oxide based supercapacitors: Study of self-discharge mechanisms, leakage current and stability via voltage holding tests. Mater. Lett. 253, 250–254 (2019)

    Article  CAS  Google Scholar 

  52. V. Vivier, A. Regis, G. Sagon, J.Y. Nedelec, L.T. Yu, C. Cachet-Vivier, Cyclic voltammetry study of bismuth oxide Bi2O3 powder by means of a cavity microelectrode. Electrochim. Acta 46(5), 907–914 (2001)

    Article  CAS  Google Scholar 

  53. S.B. Aziz, E.M. Dannoun, A.R. Murad, K.H. Mahmoud, M.A. Brza, M.M. Nofal, M.F.Z. Kadir, Influence of scan rate on CV Pattern: electrical and electrochemical properties of plasticized Methylcellulose: Dextran (MC: Dex) proton conducting polymer electrolytes. Alexandria Eng. J. 61(8), 5919–5937 (2022)

    Article  Google Scholar 

  54. R.M. Obodo, I. Ahmad, F.I. Ezema, Introductory chapter: graphene and its applications, in Graphene and Its Derivatives-Synthesis and Applications, ed. by I. Ahmad, F.I. Ezema, (Intechopen, London, 2019), pp. 1–100

    Google Scholar 

  55. R.M. Obodo, A.C. Nwanya, M. Arshad, C. Iroegbu, I. Ahmad, R.U. Osuji, F.I. Ezema, Conjugated NiO–ZnO/GO nanocomposite powder for applications in supercapacitor electrodes material. Int. J. Energy Res. 44(4), 3192–3202 (2020)

    Article  CAS  Google Scholar 

  56. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014)

    Article  CAS  Google Scholar 

  57. L. Zheng, L. Guan, G. Yang, S.Z.H. Chen, One-pot synthesis of CoFe2O4/rGO hybrid hydrogels with 3D networks for high capacity electrochemical energy storage devices. RSC Adv. 8(16), 8607–8614 (2018)

    Article  CAS  Google Scholar 

  58. J. Huang, Y. Gao, J. Luo, S. Wang, C. Li, S. Chen, J. Zhang, Editors’ choice—review—impedance response of porous electrodes: theoretical framework, physical models and applications. J. Electrochem. Soc. 167(16), 166503 (2020)

    Article  CAS  Google Scholar 

  59. R.B. Smith, E. Khoo, M.Z. Bazant, Intercalation kinetics in multiphase-layered materials. J. Phys. Chem. C 121(23), 12505–12523 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the grant from TETFUND under contract number: TETFUND/DR&D/CE/UNI/NSUKKA/RP/VOL, and the Africa Centre of Excellence for Sustainable Power and Energy Development (ACE-SPED), University of Nigeria, Nsukka

Author information

Authors and Affiliations

Authors

Contributions

SMM, RMO, and OOA: synthesized the nanomaterials, carried out the characterization, and analyzed the results. While ACN and ABCE: worked on the manuscript’s editing. The data were conceptualized, proofread, and confirmed by NN and FIE.

Corresponding author

Correspondence to Fabian I. Ezema.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare

Ethical approval

Not applicable

Informed consent

The authors have duly approved the manuscript

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbam, S.M., Obodo, R.M., Apeh, O.O. et al. Performance evaluation of Bi2O3@GO and Bi2O3@rGO composites electrode for supercapacitor application. J Mater Sci: Mater Electron 34, 1405 (2023). https://doi.org/10.1007/s10854-023-10835-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10835-7

Navigation