Skip to main content

Advertisement

Log in

Green synthesis of CuFeS2 nanoparticles using mimosa leaves extract for photocatalysis and supercapacitor applications

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We successfully synthesized CuFeS2 nanoparticles (NPs) using a simple synthesis method mediated by touch me not (Mimosa pudica) leaves extract. X-ray diffraction (XRD) was used to analyze the structural properties, and it shows that the CuFeS2 NPs have a tetragonal structure and quasi-pyramidal NPs of an average crystallite size of 31.0 nm with a secondary phase of few minor peaks of covellite (CuS). The optical characterization showed that CuFeS2 NPs have band gap energy ranges of 1.98–2.46 eV for different annealing temperatures. The electrochemical properties of the CuFeS2 NPs were investigated using cyclic voltammetry (CV), galvanostatic charge discharge (GCD), and electrochemical impedance spectroscopy (EIS). An appreciable value of specific capacitance of 501.4 F/g was obtained at a scan rate of 10 mV/s for the CuFeS2 NPs annealed at 250 °C which can be said to be within the optimum ideal annealing temperature for CuFeS2 NPs. The CuFeS2 NPs was used in the photodegradation of methylene blue (MB) under of solar irradiation. The highest rate constant of 3.1 × 10−2 min−1 and degradation efficiency of 98% were obtained for the unannealed CuFeS2 NPs with good stability after three cycles. Therefore, the synthesized CuFeS2 NPs were obtained using a Mimosa pudica leaves extract prospective application in both electrochemical energy storage devices and treatment of water contaminants. GO was added to increase the active sites for these ions, surface area, and conductivity of these electrodes for enhanced supercapacitive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available from the corresponding author (Prof. F. I. Ezema) upon reasonable request.

References

  • Alaş MÖ, Güngör A et al (2019) Feeling the power: robust supercapacitors from nanostructured conductive polymers fostered with Mn2+ and carbon dots. Nanoscale 11:12804–12816

    Google Scholar 

  • Arbizzani C, Mastragostino M, Meneghello L (1995) Characterization by impedance spectroscopy of a polymer-based supercapacitor. Electrochim Acta 40(13–14):2223–2228

    CAS  Google Scholar 

  • Asogwa PU (2010) Variation of optical properties with post deposition annealing in chemically deposited CdZnS thin films. Chalcogenide Lett. 7(8):501–508

    CAS  Google Scholar 

  • Chowdhury P, Elkamel A, Ray AK (2014) Photocatalytic processes for the removal of toxic metal ions. Heavy Met Water Presence Remov Saf:25–43

  • Deen KM, Asselin E (2019) On the use of a naturally-sourced CuFeS2 mineral concentrate for energy storage. Electrochim Acta 297:1079–1093

    CAS  Google Scholar 

  • Ding W, Wang X, Peng H, Hu L (2013) Electrochemical performance of the chalcopyrite CuFeS2 as cathode for lithium ion battery. Mater Chem Phys 137(3):872–876

    CAS  Google Scholar 

  • Dutková E, Bujňáková Z, Kováč J, Škorvánek I, Sayagués MJ, Zorkovská A, Kováč J Jr, Baláž P (2018) Mechanochemical synthesis, structural, magnetic, optical and electrooptical properties of CuFeS2 nanoparticles. Adv Powder Technol 29(8):1820–1826

    Google Scholar 

  • Dutta AK, Maji SK, Srivastava DN, Mondal A, Biswas P, Paul P, Adhikary B (Apr. 2012) Synthesis of FeS and FeSe nanoparticles from a single source precursor: a study of their photocatalytic activity, peroxidase-like behavior, and electrochemical sensing of H2O2. ACS Appl Mater Interfaces 4(4):1919–1927

    CAS  Google Scholar 

  • Ezema FI, Osuji RU (2006) Preparation and optical characterization of chemical bath deposited CdCoS2 thin films. J Appl Sci 6(8):1827–1832

    CAS  Google Scholar 

  • Ezugwu SC, Ezema FI, Asogwa PU (2010) Synthesis and characterization of ternary CuSbS2 thin films: effect of deposition time. Chalcogenide Lett 7(5):341–348

    Google Scholar 

  • Fleurat-Lessard P, Bouché-Pillon S, Leloup C, Bonnemain J-L (1997) Distribution and activity of the plasma membrane H+-ATPase in Mimosa pudica L. in relation to ionic fluxes and leaf movements. Plant Physiol 113(3):747–754

    CAS  Google Scholar 

  • Fujisawa M, Suga S, Mizokawa T, Fujimori A, Sato K (1994) Electronic structures of CuFeS2 and CuAl0.9 Fe0.1S2 studied by electron and optical spectroscopies. Phys Rev B 49(11):7155

    CAS  Google Scholar 

  • Gogotsi Y, Penner RM (2018) Energy storage in nanomaterials – capacitive, pseudocapacitive, or battery-like? ACS Nano 12(3):2081–2083

    CAS  Google Scholar 

  • Gorokhovsky VI (2007) Filtered cathodic arc deposition method and apparatus" United States Patent, Patent N0: US 7252745B2

  • Justin Raj C, Kim BC, Cho W-J, Lee W-G, Seo Y, Yu K-H (2014) Electrochemical capacitor behavior of copper sulfide (CuS) nanoplatelets. J Alloys Compd 586:191–196

    CAS  Google Scholar 

  • Kaur G, Pooja D, Kumar M, Thakur A, Bala R, Kumar A (2017) Electrochemical aspects of photocatalysis: Au@FeS2 nanocomposite for removal of industrial pollutant. Phys Chem Chem Phys 19(48):32412–32420

    CAS  Google Scholar 

  • Korzun B, Galyas A (May 2019) Thin films of CuFeS2 prepared by flash evaporation technique and their structural properties. J Electron Mater 48(5):3351–3354

    CAS  Google Scholar 

  • Lang X, Hirata A, Fujita T, Chen M (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6(4):232–236

    CAS  Google Scholar 

  • Lee KK et al (2012) α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. Nanoscale 4(9):2958

    CAS  Google Scholar 

  • Lei Z, Lu L, Zhao XS (2012) The electrocapacitive properties of graphene oxide reduced by urea. Energy Environ Sci 5(4):6391–6399

    CAS  Google Scholar 

  • Li X, Wei B (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2(2):159–173

    CAS  Google Scholar 

  • Liang D, Ma R, Jiao S, Pang G, Feng S (2012) A facile synthetic approach for copper iron sulfide nanocrystals with enhanced thermoelectric performance. Nanoscale 4(20):6265–6268

    CAS  Google Scholar 

  • Liang DX, Li J, Li L, Pang GS (2014) Fenton degradation of methylene blue by CuFeS2 ultrafine powders. Key Eng Mater 609:449–454

    Google Scholar 

  • Lokhande AC, Chalapathy RBV, He M, Jo E, Gang M, Pawar SA, Lokhande CD, Kim JH (2016) Development of Cu2SnS3 (CTS) thin film solar cells by physical techniques: a status review. Sol Energy Mater Sol Cells 153:84–107

    CAS  Google Scholar 

  • Lokhande AC, Patil A, Shelke A, Babar PT, Gang MG, Lokhande VC, Dhawale DS, Lokhande CD, Kim JH (2018) Binder-free novel Cu4SnS4 electrode for high-performance supercapacitors. Electrochim Acta 284:80–88

    CAS  Google Scholar 

  • Maji SK et al (2012) Synthesis and characterization of FeS nanoparticles obtained from a dithiocarboxylate precursor complex and their photocatalytic, electrocatalytic and biomimic peroxidase behavior. Appl Catal A Gen 419:170–177

    Google Scholar 

  • Malone M (1994) Wound-induced hydraulic signals and stimulus transmission in Mimosa pudica L. New Phytol 128(1):49–56

    Google Scholar 

  • Najib S, Bakan F et al (2020) Tailoring morphology to control defect structures in ZnO electrodes for high-performance supercapacitor devices. Nanoscale 12(30):16162–16172

    CAS  Google Scholar 

  • Nwaoga JA, Okonkwo WI, Unachukwu GO (2011) Exploring the photo sensitivities of Mimosa pudica for solar cell production. In: 26th European Photovoltaic Solar Energy Conference and Exhibition, pp 406–410

    Google Scholar 

  • Obodo RM, Nwanya AC, Ekwealor ABC, Ahmad I, Zhao T, Maaza M, Ezema F (2019) Influence of pH and annealing on the optical and electrochemical properties of cobalt (III) oxide (Co3O4) thin films. Surf Interfaces 16:114–119

    CAS  Google Scholar 

  • Obodo RM, Onah EO, Nsude HE, Agbogu A, Nwanya AC, Ahmad I, Zhao T, Ejikeme PM, Maaza M, Ezema FI (2020a) Performance evaluation of graphene oxide based Co3O4@GO, MnO2@GO and Co3O4/MnO2@GO electrodes for supercapacitors. Electroanalysis 32:1–10

    Google Scholar 

  • Obodo RM, Nwanya AC, Arshad M, Iroegbu C, Ahmad I, Osuji R, Maaza M, Ezema FI (2020b) Conjugated NiO-ZnO/GO nanocomposite powder for applications in supercapacitor electrodes material. Int J Energy Res 44:3192–3202

    CAS  Google Scholar 

  • Obodo RM, Asjad M, Nwanya AC, Ahmad I, Zhao T, Ekwealor ABC, Maaza M, Ezema FI (2020c) Evaluation of 8.0 MeV carbon (C2+) irradiation effects on hydrothermally synthesized Co3O4-CuO-ZnO@GO electrodes for supercapacitor applications. Electroanalysis 32:1–13

    Google Scholar 

  • Obodo RM, Shinde NM, Chime UK, Ezugwu SC, Nwanya AC, Ahmad I, Maaza M, Ejikeme PM, Ezema FI (2020d) Recent advances in metal oxide/hydroxide on three-dimensional nickel foam substrate for high performance pseudocapacitive electrodes. Curr Opin Electrochem 21:242–249

    CAS  Google Scholar 

  • Obodo RM, Nwanya AC, Arshad M, Iroegbu C, Ahmad I, Osuji RU, Maaza M, Ezema FI (2020e) Conjugated NiO-ZnO/GO nanocomposite powder for applications in supercapacitor electrodes material. Int J Energy Res 44:3192–3202

    CAS  Google Scholar 

  • Obodo RM, Ahmad A, Jain GH, Ahmad I, Maaza M, Ezema FI (2020f) 8.0 MeV copper ion (Cu++) irradiation-induced effects on structural, electrical, optical and electrochemical properties of Co3O4-NiO-ZnO/GO nanowires. Mater Sci Energy Technol 3:193–200

    Google Scholar 

  • Obodo RM, Nwanya AC, Iroegbu C, Ezekoye BA, Ekwealor ABC, Ahmad I, Maaza M, Ezema FI (2020g) Effects of swift copper (Cu2+) ion irradiation on structural, optical and electrochemical properties of Co3O4-CuO-MnO2/GO nanocomposites powder. Adv Powder Technol 31:1728

    CAS  Google Scholar 

  • Pilaquinga F et al (2020) Synthesis of silver nanoparticles using aqueous leaf extract of Mimosa albida (Mimosoideae): characterization and antioxidant activity. Materials 13(3):503

    CAS  Google Scholar 

  • Pradhan SK, Ghosh B, Samanta LK (2006) Mechanosynthesis of nanocrystalline CuFeS2 chalcopyrite. Phys E Low-Dimens Syst Nanostruct 33(1):144–146

    CAS  Google Scholar 

  • Qian W, Chen Z, Cottingham S, Merrill WA, Swartz NA, Goforth AM, Clare TL, Jiao J (2012) Surfactant-free hybridization of transition metal oxide nanoparticles with conductive graphene for high-performance supercapacitor. Green Chem 14(2):371–377

    CAS  Google Scholar 

  • Sahoo S, Pazhamalai P, Mariappan VK, Veerasubramani GK, Kim N-J, Kim S-J (2020) Hydrothermally synthesized chalcopyrite platelets as electrode material for symmetric supercapacitors. Inorg Chem Front 7:1492–1502. https://doi.org/10.1039/C9QI01335K

  • Sil S, Dey A, Halder S, Datta J, Ray PP (2018) Possibility to use hydrothermally synthesized CuFeS2 nanocomposite as an acceptor in hybrid solar cell. J Mater Eng Perform 27(6):2649–2654

    CAS  Google Scholar 

  • Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    CAS  Google Scholar 

  • Sprent JI, Geoghegan IE, Whitty PW, James EK (1996) Natural abundance of 15N and 13C in nodulated legumes and other plants in the cerrado and neighbouring regions of Brazil. Oecologia 105(4):440–446

    CAS  Google Scholar 

  • Sreenivasulu V et al (2016) Biosynthesis of silver nanoparticles using Mimosa pudica plant root extract: characterization, antibacterial activity and electrochemical detection of dopamine. Int J Electrochem Sci 11:9959–9971

    CAS  Google Scholar 

  • Teranishi T, Sato K (1975) Optical, electrical and magnetic properties of chalcooyrite, CuFeS2. J Phys Colloq 36(C3):149–153

    Google Scholar 

  • Theerthagiri J, Senthil RA, Malathi A, Selvi A, Madhavan J, Ashokkumar M (2015) Synthesis and characterization of a CuS–WO3 composite photocatalyst for enhanced visible light photocatalytic activity. RSC Adv 5(65):52718–52725

    CAS  Google Scholar 

  • Tonpe D, Gattu K, More G, Upadhye D, Mahajan S, Sharma R (2016) Synthesis of CuFeS2 thin films from acidic chemical baths. AIP Conf Proc 1728:020676

    Google Scholar 

  • Toufani M, Kasap S et al (2020) Synergy of nano-ZnO and 3D-graphene foam electrodes for asymmetric supercapacitor devices. Nanoscale 12(24):12790–12800

    CAS  Google Scholar 

  • Tuncer M, Bakan F et al (2019) Correction: capacitive behaviour of nanocrystalline octacalcium phosphate (OCP) (Ca8H2(PO4)6·5H2O) as an electrode material for supercapacitors: biosupercaps. Nanoscale 11:18375–18381

    CAS  Google Scholar 

  • Umar A, Karunagaran B, Suh E-K, Hahn YB (Aug. 2006) Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation. Nanotechnology 17(16):4072–4077

    CAS  Google Scholar 

  • Vahidshad Y, Mirkazemi SM, Tahir MN, Ghasemzadeh R, Tremel W (2017a) Synthesis of CuFeS2 nanoparticles by one-pot facile method. J Nanostruct 7(4):284–291

    CAS  Google Scholar 

  • Vahidshad Y, Mirkazemi SM, Tahir MN, Ghasemzadeh R, Tremel W (2017b) Synthesis of CuFeS2 nanoparticles by one-pot facile method. J Nanostruct 7(4):284–291

    CAS  Google Scholar 

  • Vanalakar SA, Patil SM, Patil VL, Vhanalkar SA, Patil PS, Kim JH (2018) Simplistic eco-friendly preparation of nanostructured Cu2FeSnS4 powder for solar photocatalytic degradation. Mater Sci Eng B 229:135–143

    CAS  Google Scholar 

  • Volkov AG, Foster JC, Ashby TA, Walker RK, Johnson JA, Markin VS (2010) Mimosa pudica: electrical and mechanical stimulation of plant movements. Plant Cell Environ 33(2):163–173

    Google Scholar 

  • Wang MX, Wang LS, Yue GH, Wang X, Yan PX, Peng DL (2009) Single crystal of CuFeS2 nanowires synthesized through solventothermal process. Mater Chem Phys 115(1):147–150

    CAS  Google Scholar 

  • Wang Y-HA, Bao N, Gupta A (2010) Shape-controlled synthesis of semiconducting CuFeS2 nanocrystals. Solid State Sci 12(3):387–390

    CAS  Google Scholar 

  • Wang Y, Li X, Zhang Y, He X, Zhao J (2015) Ether based electrolyte improves the performance of CuFeS2 spike-like nanorods as a novel anode for lithium storage. Electrochim Acta 158:368–373

    CAS  Google Scholar 

  • Wang C, Tian H, Jiang J, Zhou T, Zeng Q, He XR, Huang P, Yao Y (2017) Facile synthesis of different morphologies of Cu2SnS3 for high-performance supercapacitors. ACS Appl Mater Interfaces 9(31):26038–26044

    CAS  Google Scholar 

  • Wu Y, Wadia C, Ma W, Sadtler B, Alivisatos AP (2008) Synthesis and photovoltaic application of copper (I) sulfide nanocrystals. Nano Lett 8(8):2551–2555

    CAS  Google Scholar 

  • Xiao Q, Zhou X (2003) The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochim Acta 48(5):575–580

    CAS  Google Scholar 

  • Yang J, Yue M, Ju J, Cong R, Gao W, Yang T (2014) Co-molten solvothermal method for synthesizing chalcopyrite CuFe1−x CrxS2 (x ≤ 0.4): high photocatalytic activity for the reduction of nitrate ions. Dalton Trans 43(41):15385–15390

    CAS  Google Scholar 

  • Yang M, Lee KG, Lee SJ, Lee SB, Han Y-K, Choi BG (2015) Three-dimensional expanded graphene–metal oxide film via solid-state microwave irradiation for aqueous asymmetric supercapacitors. ACS Appl Mater Interfaces 7(40):22364–22371

    CAS  Google Scholar 

  • Yuan Q, Chen L, Xiong M, He J, Luo SL, Au CT, Yin SF (2014) Cu2O/BiVO4 heterostructures: synthesis and application in simultaneous photocatalytic oxidation of organic dyes and reduction of Cr (VI) under visible light. Chem Eng J 255:394–402

    CAS  Google Scholar 

  • Zhang M, Hong W, Xue R, Li L, Huang G, Xu X, Gao J, Yan J (2018) Nitrogen/sulfur dual-doped reduced graphene oxide supported CuFeS2 as an efficient electrocatalyst for the oxygen reduction reaction. New J Chem 42(3):2081–2088

    CAS  Google Scholar 

  • Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541

    CAS  Google Scholar 

Download references

Acknowledgments

RMO humbly acknowledges NCP for their PhD fellowship (NCP-CAAD/PhD-132/EPD) award and COMSATS for travel grant for the fellowship. RMO also acknowledges PPSMB Enugu State, Nigeria, for the study leave permission granted. FIE (90407830) cordially acknowledges UNISA for VRSP Fellowship award and also graciously acknowledges the grant by TETFUND under contract number TETF/DESS/UNN/NSUKKA/STI/VOL.I/B4.33. Also, we thank Engr. Emeka Okwuosa for the generous sponsorship of April 2014, July 2016, and July 2018 conferences/workshops on applications of nanotechnology to energy, health, and environment and for providing some research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian I. Ezema.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection: Nanotechnology Convergence in Africa

Guest Editors: Mamadou Diallo, Abdessattar Abdelkefi, and Bhekie Mamba

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nsude, H.E., Nsude, K.U., Whyte, G.M. et al. Green synthesis of CuFeS2 nanoparticles using mimosa leaves extract for photocatalysis and supercapacitor applications. J Nanopart Res 22, 352 (2020). https://doi.org/10.1007/s11051-020-05071-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-05071-7

Keywords

Navigation