Skip to main content
Log in

Influence of chelating agent on structural, magnetic, and dielectric properties of CoNd0.075Fe1.925O4-nanosized spinels ferrites derived from sol–gel auto-combustion method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The manufacture of nanotechnology is evolving quickly, and it is anticipated that the key developments will have a substantial impact on both business and science and be applicable in a wide range of fields. Cobalt ferrite (CoFe2O4) nanoparticles have been thought of as one of the top contenders in this field. The goal of the current work is to determine how the chelating agent affects on the physical properties of Nd+ 3-doped CoFe2O4 (CFO) nanomaterial. Sol–gel auto-combustion method with different chelating agents such as oxalic acid (OA), citric acid (CA), and ethylenediamine tetraacetic acid (EDTA) was used to prepare the Nd+ 3 ion-doped cobalt ferrites with the formula CoNd0.075Fe1.925O4(CNFO). X-ray diffraction (XRD) data gathered from the synthesized samples reveal that they have a single-phase spinel structure without any impurity phase or unreacted starting materials. The average particle sizes 28, 35, and 19 nm were observed through scanning electron microscopy (SEM) for the CNFO samples obtained from OA, CA, and EDTA, respectively. The magnetization value of CNFO obtained from EDTA is 76.79 emu/g, which is superior to that of CNFO obtained from OA (58.48 emu/g) and CA (61.12 emu/g). Temperature-dependent (in the range of 300-500 K) dielectric constant, dielectric loss, and electrical conductivity are also investigated as a function of frequency. The calculated grain boundary activation energy for the CNFO nanomaterial obtained from EDTA is 0.64 eV, and which is higher than that of OA (0.54 eV) and CA (0.58 eV). The nano-sized CNFO synthesized using the EDTA as a chelating agent having the lesser crystallite size (19 nm) and high magnetization (76.79 emu/g) as well as high coercivity (2917 Oe), and hence, it can be used for magnetic data storage and magneto-recording systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that all the data generated or analyzed during this study are included in this manuscript

References

  1. C.P. Luo, S.H. Liou, L. Gao, Y. Liu, D.J. Sellmyer, Nanostructured FePt: B2O3 thin films with perpendicular magnetic anisotropy. Appl. Phys. Lett. (2000). https://doi.org/10.1063/1.1314289

    Article  Google Scholar 

  2. C.V. Gopal Reddy, S.V. Manorama, V.J. Rao, Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite. Sens. Actuators B Chem. 55, 90–95 (1999). https://doi.org/10.1016/s0925-4005(99)00112-4

    Article  CAS  Google Scholar 

  3. A. Abbasi, D. Ghanbari, M. Salavati-Niasari, M. Hamadanian, Photo-degradation of methylene blue: photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites. J. Mater. Sci. Mater. Electron. 27, 4800–4809 (2016). https://doi.org/10.1007/s10854-016-4361-4

    Article  CAS  Google Scholar 

  4. M.J. Uddin, Y.-K. Jeong, Application of magnesium ferrite nanomaterials for adsorptive removal of arsenic from water: effects of mg and Fe ratio. Chemosphere 307, 135817 (2022). https://doi.org/10.1016/j.chemosphere.2022.135817

    Article  CAS  Google Scholar 

  5. L. Zhao, X. Li, Q. Zhao, Z. Qu, D. Yuan, S. Liu, X. Hu, G. Chen, Synthesis, characterization and adsorptive performance of MgFe2O4nanospheres for SO2 removal. J. Hazard. Mater. 184, 704–709 (2010). https://doi.org/10.1016/j.jhazmat.2010.08.096

    Article  CAS  Google Scholar 

  6. O. Mounkachi, R. Lamouri, B. Abraime, H. Ez-Zahraouy, A. ElKenz, M. Hamedoun, A. Benyoussef, Exploring the magnetic and structural properties of Nd-doped Cobalt nano-ferrite for permanent magnet applications. Ceram. Int. 43, 14401–14404 (2017). https://doi.org/10.1016/j.ceramint.2017.07.209K.-X

    Article  CAS  Google Scholar 

  7. F. Shi, K.X. Shi, F. Qiu, P. Wang, H. Li, C.C. Wang, Magnetic MgFe2O4/MIL-88A catalyst for photo-Fenton sulfamethoxazole decomposition under visible light. Sep. Purif. Technol. (2022). https://doi.org/10.1016/j.seppur.2022.121965

    Article  Google Scholar 

  8. H. Wu, G. Wu, L. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol. 269, 443–451 (2015). https://doi.org/10.1016/j.powtec.2014.09.045

    Article  CAS  Google Scholar 

  9. G. Wu, H. Zhang, X. Luo, L. Yang, H. Lv, Investigation and optimization of Fe/ZnFe2O4 as a wide-band electromagnetic absorber. J. Colloid Interf. Sci. 536, 548–555 (2019). https://doi.org/10.1016/j.jcis.2018.10.084

    Article  CAS  Google Scholar 

  10. H. Zhang, Z. Jia, A. Feng, Z. Zhou, L. Chen, C. Zhang, X. Liu, G. Wu, In situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber. Compos. Part B Eng. 199, 108261 (2020). https://doi.org/10.1016/j.compositesb.2020.108261

    Article  CAS  Google Scholar 

  11. X. Zhou, B. Wang, Z. Jia, X. Zhang, X. Liu, K. Wang, B. Xu, G. Wu, Dielectric behavior of Fe3N@C composites with green synthesis and their remarkable electromagnetic wave absorption performance. J. Colloid Interf. Sci. 582, 515–525 (2021). https://doi.org/10.1016/j.jcis.2020.08.087

    Article  CAS  Google Scholar 

  12. M.A. Almessiere, Y. Slimani, A.V. Trukhanov, A. Baykal, H. Gungunes, E.L. Trukhanov, S.V. Trukhanov, V.G. Kostishin, Strong correlation between Dy3+ concentration, structure, magnetic and microwave properties of the [Ni0.5Co0.5](DyxFe2-x)O4 nanosized ferrites. J. Ind. Eng. Chem. 90, 251–259 (2020). https://doi.org/10.1016/j.jiec.2020.07.020

    Article  CAS  Google Scholar 

  13. D.P. Sherstyuk, A. Yu Starikov, V.E. Zhivulin, D.A. Zherebtsov, S.A. Gudkova, N.S. Perov, Y.A. Alekhina, K.A. Astapovich, D.A. Vinnik, A.V. Trukhanov, Effect of Co content on magnetic features and SPIN states IN Ni–Zn spinel ferrites. Ceram. Int. 47, 12163–12169 (2021). https://doi.org/10.1016/j.ceramint.2021.01.063

    Article  CAS  Google Scholar 

  14. D.A. Vinnik, V.E. Zhivulin, D.P. Sherstyuk, A.Y. Starikov, P.A. Zezyulina, S.A. Gudkova, D.A. Zherebtsov, K.N. Rozanov, S.V. Trukhanov, K.A. Astapovich, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, A.V. Trukhanov, Ni substitution effect on the structure, magnetization, resistivity and permeability of zinc ferrites. J. Mater. Chem. C (2021). https://doi.org/10.1039/d0tc05692h

    Article  Google Scholar 

  15. M.A. Almessiere, Y. Slimani, H. Güngüne, S. Ali, A. Manikandan, I. Ercan, A. Baykal, A.V. Trukhanov, Magnetic attributes of NiFe2O4 nanoparticles: influence of dysprosium Ions (Dy3+) substitution. Nanomaterials 9, 820 (2019). https://doi.org/10.3390/nano9060820

    Article  CAS  Google Scholar 

  16. V.A. Ketsko, E.N. Beresnev, M.A. Kopeva, L.V. Elesina, A.I. Baranchikov, A.I. Stognii, A.V. Trukhanov, N.T. Kuznetsov, Specifics of pyrohydrolytic and solidphase syntheses of solid solutions in the (MgGa2O4)x(MgFe2O4)1 – x system. Russ. J. Inorg. Chem. 55, 427–429 (2010). https://doi.org/10.1134/S0036023610030216

    Article  CAS  Google Scholar 

  17. Y. Slimani, B. Unal, M.A. Almessiere, A. Demir Korkmaz, S.E. Shirsath, G. Yasin, A.V. Trukhanov, A. Baykal, Investigation of structural and physical properties of Eu3+ ions substituted Ni0.4Cu0.2Zn0.4Fe2O4 spinel ferrite nanoparticles prepared via sonochemical approach. Results Phys. 17, 103061 (2020). https://doi.org/10.1016/j.rinp.2020.103061

    Article  Google Scholar 

  18. M.A. Almessiere, Y. Slimani, H. Güngüneş, V.G. Kostishyn, S.V. Trukhanov, A.V. Trukhanovd, A. Baykal, Impact of Eu3+ ion substitution on structural, magnetic and microwave traits of Ni–Cu–Zn spinel ferrites. Ceram. Int. 46, 11124–11131 (2020). https://doi.org/10.1016/j.ceramint.2020.01.132

    Article  CAS  Google Scholar 

  19. S.R. Sivagurunathan, Gibin, Preparation and characterization of nanosized cobalt ferrite particles by co-precipitation method with citrate as chelating agent. J. Mater. Sci: Mater. Electron. 27, 8891–8898 (2016). https://doi.org/10.1007/s10854-016-4915-5

    Article  CAS  Google Scholar 

  20. T.L. Templeton, A.S. Arrott, A.E. Curzon, M.A. Gee, X.-Z. Li, Y. Yoshida, P.J. Schurer, J.L. LaCombe, Magnetic properties of CoxFe3 – xO4 during conversion from normal to inverse spinel particles. J. Appl. Phys. 73, 6728 (1993). https://doi.org/10.1063/1.352516P

    Article  CAS  Google Scholar 

  21. S. Ayyappan, S. Mahadevan, P. Chandramohan, M.P. Srinivasan, J. Philip, B. Raj, Influence of Co2+ Ion Concentration on the size, magnetic properties, and purity of CoFe2O4 spinel ferrite nanoparticles. J. Phys. Chem. C 114, 6334–6341 (2010). https://doi.org/10.1021/jp911966p

    Article  CAS  Google Scholar 

  22. R. Zhang, L. Suna, Z. Wang, W. Hao, E. Cao, Y. Zhang, Dielectric and magnetic properties of CoFe2O4 prepared by sol-gel auto-combustion method. Mater. Res. Bull. 98, 133–138 (2018). https://doi.org/10.1016/j.materresbull.2017.08.006

    Article  CAS  Google Scholar 

  23. C. Murugesan, L. Okras, K. Ugendar, G. Chandrasekaran, X. Liu, D. Diao, J. Shen, Improved magnetic and electrical properties of zn substituted nanocrystalline MgFe2O4 ferrite. J. Magn. Magn. Mater. 550, 169066 (2022). https://doi.org/10.1016/j.jmmm.2022.169066

    Article  CAS  Google Scholar 

  24. G. Bulai, L. Diamandescu, I. Dumitru, S. Gurlui, M. Feder, O.F. Caltun, Effect of rare earth substitution in cobalt ferrite bulk materials. J. Magn. Magn. Mater. (2015). https://doi.org/10.1016/j.jmmm.2015.04.089

    Article  Google Scholar 

  25. M. Krishna Surendra, D. Kannan, M.S. Ramachandra Rao, Magnetic and dielectric properties study of cobalt ferrite nanoparticles synthesized by co-precipitation method. MRS Proc. 1368, 1140 (2011). https://doi.org/10.1557/opl.2011.1281

    Article  CAS  Google Scholar 

  26. G. Allaedini, S.M. Tasirin, P. Aminayi, Magnetic properties of cobalt ferrite synthesized by hydrothermal method. Int. Nano Lett. 5, 183–186 (2015). https://doi.org/10.1007/s40089-015-0153-8

    Article  CAS  Google Scholar 

  27. I. Sharifi, H. Shokrollahi, M.M. Doroodmand, R. Safi, Magnetic and structural studies on CoFe2O4 nanoparticles synthesized by co-precipitation, normal micelles and reverse micelles methods. J. Magn. Magn. Mater. 324, 1854–1861 (2012). https://doi.org/10.1016/j.jmmm.2012.01.015

    Article  CAS  Google Scholar 

  28. Y.I. Kim, D. Kim, C.S. Lee, Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled co-precipitation method. Phys. B: Condens. Matter. 337, 42–51 (2003). https://doi.org/10.1016/S0921-4526(03)00322-3

    Article  CAS  Google Scholar 

  29. Z.T. Chen, L. Gao, Synthesis and magnetic properties of CoFe2O4 nanoparticles by using PEG as surfactant additive. Mater. Sci. Eng. B 141, 82 (2007). https://doi.org/10.1016/j.mseb.2007.06.003

    Article  CAS  Google Scholar 

  30. X. Jia, D. Chen, X. Jiao, T. He, H. Wang, W. Jiang, Monodispersed Co, Ni-Ferrite nanoparticles with tunable sizes: controlled synthesis, magnetic properties, and surface modification. J. Phys. Chem. C 112, 911 (2008). https://doi.org/10.1021/jp077019+

    Article  CAS  Google Scholar 

  31. L. Kumar, M. Kar, Effect of substitution on the structural and magneto crystalline anisotropy of nanocrystalline cobalt ferrite (CoFe2−xLaxO4) . Ceram. Int. 38, 4771–4782 (2012). https://doi.org/10.1016/j.ceramint.2012.02.065

    Article  CAS  Google Scholar 

  32. Y. Slimani, M.A. Almessiere, A. Demir Korkmaz, A. Baykal, H. Gungunes, M.G. Vakhitov, D.S. Klygach, S.V. Trukhanovi, A.V. Trukhanov, The impact of indium ion on structural, magnetic, and electrodynamic traits of co-ni nanospinel ferrites. J. Magn. Magn. Mater. 562, 169782 (2022). https://doi.org/10.1016/j.jmmm.2022.169782

    Article  CAS  Google Scholar 

  33. B. Ünal, M.A. Almessiere, A. Demir Korkmaz, Y. Slimani, A. Baykal, Effect of thulium substitution on conductivity and dielectric belongings of nanospinel cobalt ferrite. J. Rare Earths 38, 1103–1113 (2020). https://doi.org/10.1016/j.jre.2019.09.011

    Article  CAS  Google Scholar 

  34. M.A. Almessiere, Y. Slimani, A.D. Korkmaz, S. Guner, M. Sertkol, S.E. Shirsath, A. Baykal, Structural, optical and magnetic properties of Tm3+ substituted cobalt spinel ferrites synthesized via sonochemical approach. Ultrason. Sonochem. 54, 1–10 (2019). https://doi.org/10.1016/j.ultsonch.2019.02.022

    Article  CAS  Google Scholar 

  35. S. Akhtar, Y. Slimani, M.A. Almessiere, A. Baykal, E. Gokce Polat, S. Caliskan, Influence of Tm and Tb co-substitution on structural and magnetic features of CoFe2O4 nanospinel ferrites. Nano-Struct. Nano-Obj. 33, 100944 (2023). https://doi.org/10.1016/j.nanoso.2023.100944

    Article  CAS  Google Scholar 

  36. Y. Slimani, M.A. Almessiere, S. Guner, B. Aktas, S.E. Shirsath, M.V. Silibin, A.V. Trukhanov, A. Baykal, Impact of Sm3+ and Er3+ cations on the structural, optical, and magnetic traits of spinel cobalt ferrite nanoparticles: comparison investigation. ACS Omega (2022). https://doi.org/10.1021/acsomega.1c06898

    Article  Google Scholar 

  37. A.K. Nikumbh et al., Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J. Magn. Magn. Mater. 355, 201–209 (2014). https://doi.org/10.1016/j.jmmm.2013.11.052

    Article  CAS  Google Scholar 

  38. E.E. Ateia, M.K. Abdelmaksoud, M.M. Arman, A.S. Shafaay, Comparative study on the physical properties of rare–earth–substituted nano–sized CoFe2O4. Appl. Phys. A 126, 91 (2020). https://doi.org/10.1007/s00339-020-3282-5

    Article  CAS  Google Scholar 

  39. F.X. Cheng, J.T. Jia, Z.G. Xu, B. Zhou, C.S. Liao, C.H. Yan, L.Y. Chen, H.B. Zhao, Microstructure, magnetic, and magneto-optical properties of chemical synthesized Co-RE (RE = Ho, Er, Tm, Yb, Lu) ferrite nanocrystalline films. J. Appl. Phys. 86, 2727–2732 (1999). https://doi.org/10.1063/1.371117

    Article  CAS  Google Scholar 

  40. R.S. Yadav, J. Havlica, J. Masilko, L. Kalina, J. Wasserbauer, M. Hajdúchová, V. Enev, I. Kuřitka, Z. Kožákov, Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties. J. Magn. Magn. Mater. 399, 109–117 (2016). https://doi.org/10.1016/j.jmmm.2015.09.055

    Article  CAS  Google Scholar 

  41. L.B. Tahar, M. Artus, S. Ammar, L.S. Smiri, F. Herbst, M.-J. Vaulay, V. Richard, J.-M. Grenèche, F. Villain, F. Fiévet, Magnetic properties of CoFe19RE0.1O4 nanoparticles (RE = La, Ce, Nd, Sm, Eu, Gd, Tb, Ho) prepared in polyol. J. Magn.  Magn. Mater. 320, 3242–3250 (2008). https://doi.org/10.1016/j.jmmm.2008.06.031

    Article  CAS  Google Scholar 

  42. Y.H. Hou, Y.L. Huang, S.J. Hou, S.C. Ma, Z.W. Liu, Y.F. Ouyang, Structural, electronic and magnetic properties ofRE3+-doping in CoFe2O4: a first-principles study. J. Magn. Magn. Mater. 421, 300–305 (2017). https://doi.org/10.1016/j.jmmm.2016.08.027

    Article  CAS  Google Scholar 

  43. L. Zhao, H. Yang, X.P. Zhao, L.X. Yu, Y.M. Cui, S.H. Feng, Magnetic properties of CoFe2O4 ferrite doped with rare earth ion. Mater. Lett. 60, 1–6 (2006). https://doi.org/10.1016/j.matlet.2005.07.017

    Article  CAS  Google Scholar 

  44. K. Mohit, S.K. Rout, S. Parida, G.P. Singh, S.K. Sharma, S.K. Pradhan, I.W. Kim, Structural, optical and dielectric studies of NixZn1–xFe2O4 prepared by auto combustion route. Phys. B: Condens. Matter. 407, 935–942 (2012). https://doi.org/10.1016/j.physb.2011.12.003

    Article  CAS  Google Scholar 

  45. P. Gupta, R. Bhargava, R. Das, P. Poddar, Static and dynamic magnetic properties and effect of surface chemistry on the morphology and crystallinity of DyCrO3 nanoplatelets. RSC Adv. 3, 26427–26432 (2013). https://doi.org/10.1039/C3RA43088J

    Article  CAS  Google Scholar 

  46. R. Rai, M. Molli, Effect of different complexing agents on the magnetic, optical and photocatalytic properties of sol–gel synthesized KBiFe2O5. Bull. Mater. Sci. 44, 34 (2021). https://doi.org/10.1007/s12034-020-02328-8

    Article  CAS  Google Scholar 

  47. C. Venkatrao, D.R.S. Reddy, K.R. Kandula, R. Bhimireddi, G.S.-D. Structural, Optical, dielectric, and magnetic properties of YFeO3 Nanomaterials obtained by the sol-gel technique using tartaric acid as a chelating agent. Phys. Status Solidi.(b) (2022). https://doi.org/10.1002/pssb.202200272

    Article  Google Scholar 

  48. W.C. Kim, S.W. Lee, S.J. Kim, S.H. Yoon, C.S. Kim, Magnetic properties of Y-, La-, Nd-, Gd-, and bi-doped ultrafine CoFe2O4 spinel grown by using a sol-gel method. J. Magn. Magn. Mater. (2000). https://doi.org/10.1016/S0304-8853(00)00121-9

    Article  Google Scholar 

  49. S. Amiri, H. Shokrollahi, Magnetic and structural properties of RE doped co-ferrite (RE = nd, Eu, Gd) nano-particles synthesized by co-precipitation. J. Mag. Magn. Mater 345, 18–23 (2013). https://doi.org/10.1016/j.jmmm.2013.05.030

    Article  CAS  Google Scholar 

  50. M. Ahmadipour, M.J. Abu, M.F. Ab Rahman, M.F. Ain, Z.A. Ahmad, Assessment of crystallite size and strain of CaCu3Ti4O12 prepared via conventional solid‐state reaction. Micro Nano Lett. 11, 147–150 (2016). https://doi.org/10.1049/mnl.2015.0562

    Article  CAS  Google Scholar 

  51. S. Jabez, S. Mahalakshmi, S. Nithiyanantham, Frequency and temperature effects on dielectric properties of cobalt ferrite. J. Mater. Sci: Mater. Electron. 28, 5504–5511 (2017). https://doi.org/10.1007/s10854-016-6212-8

    Article  CAS  Google Scholar 

  52. A. Ghasemi, M. Mousavinia, Structural and magnetic evaluation of substituted NiZnFe2O4 particles synthesized by conventional sol–gel method. Ceram. Int. 40, 2825–2834 (2014). https://doi.org/10.1016/j.ceramint.2013.10.031

    Article  CAS  Google Scholar 

  53. A. Goktas, Role of simultaneous substitution of Cu2+ and Mn2+ in ZnS thin films: defects-induced enhanced room temperature ferromagnetism and photoluminescence. Physica E 117, 113828 (2020). https://doi.org/10.1016/j.physe.2019.113828

    Article  CAS  Google Scholar 

  54. F. Mikailzade, H. Türkan, F. Önal, M. Zarbali, A. Göktaş, A. Tumbul, Structural and magnetic properties of polycrystalline Zn1 – xMnxO films synthesized on glass and p–type Si substrates using Sol–Gel technique. Appl. Phys. A 127, 408 (2021). https://doi.org/10.1007/s00339-021-04519-4

    Article  CAS  Google Scholar 

  55. R. Jabbar, S.H. Sabeeh, A.M. Hameed, Structural, dielectric and magnetic properties of Mn+ 2 doped cobalt ferrite nanoparticles. J. Magn. Magn. Mater. 494, 165726 (2020). https://doi.org/10.1016/j.jmmm.2019.165726

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

NBG: Sample preparation and their structural characterization and original draft preparation. RSRD: Conceptualization, and Reviewing and editing the manuscript.

Corresponding author

Correspondence to Rama Sekhara Reddy Dachuru.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatchakayala, N.B., Dachuru, R.S.R. Influence of chelating agent on structural, magnetic, and dielectric properties of CoNd0.075Fe1.925O4-nanosized spinels ferrites derived from sol–gel auto-combustion method. J Mater Sci: Mater Electron 34, 1394 (2023). https://doi.org/10.1007/s10854-023-10794-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10794-z

Navigation