Skip to main content
Log in

Boosting inverted type organic solar cell efficiency through the use of spray coated Y and Sn co-doped zinc oxide nanoparticles as an electron transport layers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the use of zinc oxide nanoparticles (ZnO NPs) as an electron transport layer (ETL) in inverted type organic solar cells (IOSCs). Three different forms of ZnO NPs were synthesized: undoped, doped with Sn or Y, and co-doped with combinations of these elements (Sn-co-doped Y). The ZnO NPs ETL was introduced into the solar cells using a spray coating technique, resulting in a bulk heterojunction structure of ZnO NPs/P3HT:PCBM/V2O5/Ag. Various methodological approaches were used to characterize the ZnO nanoparticles, including scanning electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, and ultraviolet/visible spectrophotometer. The current–voltage performance of the solar cells was measured under 100 mW/cm2 white light. The results showed that the efficiency of the solar cells using undoped ZnO as ETL was 3.09%. However, the use of 0.5 wt% Sn and 1 wt% Y co-doped ZnO as ETL significantly improved the efficiency to 3.67%, representing an approximate increase of 19% compared to the undoped ETL. All experimental processes were performed under ambient air conditions. In conclusion, this study highlights the potential of using doped or co-doped ZnO NPs as ETL for fabricating IOSCs at low temperatures and improving their efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. P.G.V. Sampaio, M.O.A. González, A review on organic photovoltaic cell. Int. J. Energy Res. 46, 17813 (2022). https://doi.org/10.1002/er.8456

    Article  Google Scholar 

  2. Stability of polymer solar cells - PubMed. https://pubmed.ncbi.nlm.nih.gov/22213056/. Accessed 15 Oct 2022

  3. S.K. Swami, N. Chaturvedi, A. Kumar, V. Kumar, A. Garg, V. Dutta, Spray deposited gallium doped zinc oxide (GZO) thin film as the electron transport layer in inverted organic solar cells. Sol. Energy 231, 458–463 (2022). https://doi.org/10.1016/j.solener.2021.12.002

    Article  CAS  Google Scholar 

  4. T. Kuwabara, T. Nakayama, K. Uozumi, T. Yamaguchi, K. Takahashi, Highly durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer. Sol. Energy Mater. Sol. Cells 92(11), 1476–1482 (2008). https://doi.org/10.1016/j.solmat.2008.06.012

    Article  CAS  Google Scholar 

  5. J. Sun et al., Improved performance of inverted organic solar cells by using La-doped TiO2 film as electron transport layer. J. Mater. Sci. Mater. Electron. 28(2), 2272–2278 (2017). https://doi.org/10.1007/s10854-016-5661-4

    Article  CAS  Google Scholar 

  6. I. Khatri, J. Bao, N. Kishi, T. Soga, Similar device architectures for inverted organic solar cell and laminated solid-state dye-sensitized solar cells. Int. Sch. Res. Not. 2012, e180787 (2012). https://doi.org/10.5402/2012/180787

    Article  CAS  Google Scholar 

  7. F.C. Krebs, Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes. Sol. Energy Mater. Sol. Cells 92(7), 715–726 (2008). https://doi.org/10.1016/j.solmat.2008.01.013

    Article  CAS  Google Scholar 

  8. S.K. Hau, H.-L. Yip, K. Leong, A.K.-Y. Jen, Spraycoating of silver nanoparticle electrodes for inverted polymer solar cells. Org. Electron. 10(4), 719–723 (2009). https://doi.org/10.1016/j.orgel.2009.02.019

    Article  CAS  Google Scholar 

  9. C. Girotto, B.P. Rand, S. Steudel, J. Genoe, P. Heremans, Nanoparticle-based, spray-coated silver top contacts for efficient polymer solar cells. Org. Electron. 10(4), 735–740 (2009). https://doi.org/10.1016/j.orgel.2009.03.006

    Article  CAS  Google Scholar 

  10. W. Gaynor, J.-Y. Lee, P. Peumans, Fully solution-processed inverted polymer solar cells with laminated nanowire electrodes. ACS Nano 4(1), 30–34 (2010). https://doi.org/10.1021/nn900758e

    Article  CAS  Google Scholar 

  11. J. Luo, Y. Wang, Q. Zhang, Progress in perovskite solar cells based on ZnO nanostructures. Sol. Energy 163, 289–306 (2018). https://doi.org/10.1016/j.solener.2018.01.035

    Article  CAS  Google Scholar 

  12. J. Kim, K.S. Kim, C.W. Myung, Efficient electron extraction of SnO2 electron transport layer for lead halide perovskite solar cell. NPJ Comput. Mater. (2020). https://doi.org/10.1038/s41524-020-00370-y

    Article  Google Scholar 

  13. Y. Jouane et al., Influence of flexible substrates on inverted organic solar cells using sputtered ZnO as cathode interfacial layer. Org. Electron. 14(7), 1861–1868 (2013). https://doi.org/10.1016/j.orgel.2013.04.024

    Article  CAS  Google Scholar 

  14. Y. Kang, F. Yu, L. Zhang, W. Wang, L. Chen, Y. Li, Review of ZnO-based nanomaterials in gas sensors. Solid State Ion. 360, 115544 (2021). https://doi.org/10.1016/j.ssi.2020.115544

    Article  CAS  Google Scholar 

  15. J.T. Carvalho et al., Fully printed zinc oxide electrolyte-gated transistors on paper. Nanomaterials 9, 169 (2019). https://doi.org/10.3390/nano9020169

    Article  CAS  Google Scholar 

  16. A. Wibowo et al., ZnO nanostructured materials for emerging solar cell applications. RSC Adv. 10(70), 42838–42859 (2020). https://doi.org/10.1039/D0RA07689A

    Article  CAS  Google Scholar 

  17. ZnO nanowires and their application for solar cells | IntechOpen. https://www.intechopen.com/chapters/16351 . Accessed 18 Oct 2022

  18. R. Rasmidi, M. Duinong, F.P. Chee, Radiation damage effects on zinc oxide (ZnO) based semiconductor devices: a review. Radiat. Phys. Chem. 184, 109455 (2021). https://doi.org/10.1016/j.radphyschem.2021.109455

    Article  CAS  Google Scholar 

  19. P. Fan, D. Zhang, Y. Wu, J. Yu, T.P. Russell, Polymer-modified ZnO nanoparticles as electron transport layer for polymer-based solar cells. Adv. Funct. Mater. 30(32), 2002932 (2020). https://doi.org/10.1002/adfm.202002932

    Article  CAS  Google Scholar 

  20. A. Kösemen, Electrochemical growth of Y doped ZnO nanorods for use in inverted type organic solar cells as electron transport layer. Mater. Res. Express 6(9), 095024 (2019). https://doi.org/10.1088/2053-1591/ab2db0

    Article  CAS  Google Scholar 

  21. B.-C. Jiang, S.-H. Yang, Nickel-doped ZnO nanowalls with enhanced electron transport ability for electrochemical water splitting. Nanomaterials 11, 1980 (2021). https://doi.org/10.3390/nano11081980

    Article  CAS  Google Scholar 

  22. A. Nourdine, M. Abdelli, N. Charvin, L. Flandin, Custom synthesis of ZnO nanowires for efficient ambient air-processed solar cells. ACS Omega 6(48), 32365–32378 (2021). https://doi.org/10.1021/acsomega.1c01654

    Article  CAS  Google Scholar 

  23. W. Xing et al., Tellurophene-based metal-organic framework nanosheets for high-performance organic solar cells. J. Power Sources 401, 13–19 (2018). https://doi.org/10.1016/j.jpowsour.2018.08.078

    Article  CAS  Google Scholar 

  24. R. Shashanka, H. Esgin, V.M. Yilmaz, Y. Caglar, Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cells. J. Sci. Adv. Mater. Devices 5(2), 185–191 (2020). https://doi.org/10.1016/j.jsamd.2020.04.005

    Article  Google Scholar 

  25. S. Mohan, M. Vellakkat, A. Aravind, U. Rekha, Hydrothermal synthesis and characterization of Zinc Oxide nanoparticles of various shapes under different reaction conditions. Nano Express 1(3), 030028 (2020). https://doi.org/10.1088/2632-959X/abc813

    Article  Google Scholar 

  26. B. Fanady, W. Song, R. Peng, T. Wu, Z. Ge, Efficiency enhancement of organic solar cells enabled by interface engineering of sol-gel zinc oxide with an oxadiazole-based material. Org. Electron. 76, 105483 (2020). https://doi.org/10.1016/j.orgel.2019.105483

    Article  CAS  Google Scholar 

  27. R.N.T. Siswanto, N.T. Rochman, P.R. Akwalia, Fabrication and characterization of Zinc Oxide (ZnO) nanoparticle by sol-gel method. J. Phys. Conf. Ser. 853, 012041 (2017). https://doi.org/10.1088/1742-6596/853/1/012041

    Article  CAS  Google Scholar 

  28. Effect of temperature on the morphology of ZnO nanoparticles: a comparative study | SpringerLink. https://doi.org/10.1007/s13204-017-0553-3 . Accessed 18 Oct 2022

  29. M.A. Moghri Moazzen, S.M. Borghei, F. Taleshi, Change in the morphology of ZnO nanoparticles upon changing the reactant concentration. Appl. Nanosci. 3(4), 295–302 (2013). https://doi.org/10.1007/s13204-012-0147-z

    Article  CAS  Google Scholar 

  30. C.C. Lin, Y.C. You, Mass-production of ZnO nanoparticles by precipitation in a rotating packed bed: effect of zinc salt. J. Mater. Res. Technol. 9(4), 8451–8458 (2020). https://doi.org/10.1016/j.jmrt.2020.05.040

    Article  CAS  Google Scholar 

  31. X. Song, G. Liu, P. Sun, Y. Liu, W. Zhu, Zirconium-doped zinc oxide nanoparticles as cathode interfacial layers for efficiently rigid and flexible organic solar cells. J. Phys. Chem. Lett. 12(43), 10616–10621 (2021). https://doi.org/10.1021/acs.jpclett.1c03065

    Article  CAS  Google Scholar 

  32. J. Wang et al., Li-doped ZnO electron transport layer for improved performance and photostability of organic solar cells. ACS Appl. Mater. Interfaces 14(10), 12450–12460 (2022). https://doi.org/10.1021/acsami.1c22093

    Article  CAS  Google Scholar 

  33. M. Thambidurai et al., High performance inverted organic solar cells with solution processed Ga-doped ZnO as an interfacial electron transport layer. J. Mater. Chem. C 1(48), 8161–8166 (2013). https://doi.org/10.1039/C3TC31650E

    Article  CAS  Google Scholar 

  34. M. Thambidurai et al., Enhanced photovoltaic performance of inverted organic solar cells with In-doped ZnO as an electron extraction layer. Renew. Energy 66, 433–442 (2014). https://doi.org/10.1016/j.renene.2013.12.031

    Article  CAS  Google Scholar 

  35. Q. Zhang et al., Inverted organic solar cells with low-temperature Al-doped-ZnO electron transport layer processed from aqueous solution. Polymers 10(2), 127 (2018). https://doi.org/10.3390/polym10020127

    Article  CAS  Google Scholar 

  36. Characterization of ınverted-type organic solar cell with Europiu...: Ingenta Connect. https://www.ingentaconnect.com/content/asp/jnn/2016/00000016/00000008/art00130;jsessionid=11ay68wffbpl1.x-ic-live-02. Accessed 23 Oct 2022

  37. Niobium doped zinc oxide nanorods as an electron transport layer for high-performance inverted polymer solar cells. - Abstract - Europe PMC. https://europepmc.org/article/med/29100159. Accessed 23 Oct 2022

  38. M. Amjad et al., Photovoltaic properties of ZnO films Co-doped with Mn and La to enhance solar cell efficiency. Nanomaterials 12(7), 1057 (2022). https://doi.org/10.3390/nano12071057

    Article  CAS  Google Scholar 

  39. S. Homnan et al., Low-temperature processable Sn-doped ZnO films as electron transporting layers for perovskite solar cells. J. Mater. Sci. Mater. Electron. 32(23), 27279–27289 (2021). https://doi.org/10.1007/s10854-021-07097-6

    Article  CAS  Google Scholar 

  40. A. Toghan, A. Modwi, A.M. Mostafa, A.I. Alakhras, M. Khairy, K.K. Taha, Insight of yttrium doping on the structural and dielectric characteristics of ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 33(23), 18167–18179 (2022). https://doi.org/10.1007/s10854-022-08673-0

    Article  CAS  Google Scholar 

  41. B. Yahmadi, O. Kamoun, B. Alhalaili, S. Alleg, R. Vidu, N. Kamoun Turki, Physical investigations of (Co, Mn) Co-doped ZnO nanocrystalline films. Nanomaterials 10(8), 1507 (2020). https://doi.org/10.3390/nano10081507

    Article  CAS  Google Scholar 

  42. C. Abed et al., Processing and study of optical and electrical properties of (Mg, Al) Co-doped ZnO thin films prepared by RF magnetron sputtering for photovoltaic application. Materials 13(9), 2146 (2020). https://doi.org/10.3390/ma13092146

    Article  CAS  Google Scholar 

  43. G. Zheng et al., Investigation of physical properties of F-and-Ga co-doped ZnO thin films grown by RF magnetron sputtering for perovskite solar cells applications. Mater. Sci. Semicond. Process. 112, 105016 (2020). https://doi.org/10.1016/j.mssp.2020.105016

    Article  CAS  Google Scholar 

  44. A. Tiwari, P.P. Sahay, Sn–Ga co-doping in sol-gel derived ZnO thin films: studies of their microstructural, optical, luminescence and electrical properties. Mater. Sci. Semicond. Process. 118, 105178 (2020). https://doi.org/10.1016/j.mssp.2020.105178

    Article  CAS  Google Scholar 

  45. N. Han et al., Sn and Y co-doped BaCo0.6Fe0.4O3-δ cathodes with enhanced oxygen reduction activity and CO2 tolerance for solid oxide fuel cells. Chin. Chem. Lett. 33(5), 2658–2662 (2022). https://doi.org/10.1016/j.cclet.2021.09.100

    Article  CAS  Google Scholar 

  46. C.A. Gupta, S. Mangal, U.P. Singh, Impact of rapid thermal annealing on structural, optical and electrical properties of DC sputtered doped and co-doped ZnO thin film. Appl. Surf. Sci. 288, 411–415 (2014). https://doi.org/10.1016/j.apsusc.2013.10.048

    Article  CAS  Google Scholar 

  47. C.-Y. Wu, L.-C. Chiu, J.-Y. Juang, High haze Ga and Zr co-doped zinc oxide transparent electrodes for photovoltaic applications. J. Alloys Compds. 901, 163678 (2022). https://doi.org/10.1016/j.jallcom.2022.163678

    Article  CAS  Google Scholar 

  48. V. Gurylev, T.P. Perng, Defect engineering of ZnO: review on oxygen and zinc vacancies. J. Eur. Ceram. Soc. 41(10), 4977–4996 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.03.031

    Article  CAS  Google Scholar 

  49. T. Jia, W. Wang, F. Long, Z. Fu, H. Wang, Q. Zhang, Synthesis, characterization and luminescence properties of Y-doped and Tb-doped ZnO nanocrystals. Mater. Sci. Eng. B 162(3), 179–184 (2009). https://doi.org/10.1016/j.mseb.2009.04.004

    Article  CAS  Google Scholar 

  50. S.C. Navale, V. Ravi, I.S. Mulla, Investigations on Ru doped ZnO: strain calculations and gas sensing study. Sens. Actuators B Chem. 139(2), 466–470 (2009). https://doi.org/10.1016/j.snb.2009.03.068

    Article  CAS  Google Scholar 

  51. P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8(4), 123–134 (2014). https://doi.org/10.1007/s40094-014-0141-9

    Article  Google Scholar 

  52. M. Jung, S. Kim, S. Ju, Enhancement of green emission from Sn-doped ZnO nanowires. Opt. Mater. 33(3), 280–283 (2011). https://doi.org/10.1016/j.optmat.2010.08.029

    Article  CAS  Google Scholar 

  53. H. Parangusan, D. Ponnamma, M.A.A. Al-Maadeed, A. Marimuthu, Nanoflower-like yttrium-doped ZnO photocatalyst for the degradation of methylene blue dye. Photochem. Photobiol. 94(2), 237–246 (2018). https://doi.org/10.1111/php.12867

    Article  CAS  Google Scholar 

  54. B. Khodadadi, M. Bordbar, A. Yeganeh-Faal, Optical, structural, and photocatalytic properties of Cd-doped ZnO powders prepared via sol–gel method. J. Sol.-Gel Sci. Technol. 77(3), 521–527 (2016). https://doi.org/10.1007/s10971-015-3877-z

    Article  CAS  Google Scholar 

  55. J.-Q. Wen, J.-M. Zhang, Z.-Q. Li, Structural and electronic properties of Y doped ZnO with different Y concentration. Optik 156, 297–302 (2018). https://doi.org/10.1016/j.ijleo.2017.10.146

    Article  CAS  Google Scholar 

  56. M.H. Majeed, M. Aycibin, A.G. Imer, Study of the electronic, structure and electrical properties of Mg and Y single doped and Mg/Y co-doped ZnO: experimental and theoretical studies. Optik 258, 168949 (2022). https://doi.org/10.1016/j.ijleo.2022.168949

    Article  CAS  Google Scholar 

  57. F.Z. Bedia, A. Bedia, M. Aillerie, N. Maloufi, B. Benyoucef, Structural, optical and electrical properties of sn-doped zinc oxide transparent films interesting for organic solar cells (OSCs). Energy Procedia 74, 539–546 (2015). https://doi.org/10.1016/j.egypro.2015.07.745

    Article  CAS  Google Scholar 

  58. Y. Liu, Y. Li, H. Zeng, ZnO-based transparent conductive thin films: doping, performance, and processing. J. Nanomater. 2013, e196521 (2013). https://doi.org/10.1155/2013/196521

    Article  CAS  Google Scholar 

  59. H. Zhou, Z. Li, Synthesis of nanowires, nanorods and nanoparticles of ZnO through modulating the ratio of water to methanol by using a mild and simple solution method. Mater. Chem. Phys. 89(2), 326–331 (2005). https://doi.org/10.1016/j.matchemphys.2004.09.006

    Article  CAS  Google Scholar 

  60. MSh. Abdel-wahab, A. Jilani, I.S. Yahia, A.A. Al-Ghamdi, Enhanced the photocatalytic activity of Ni-doped ZnO thin films: morphological, optical and XPS analysis. Superlattices Microstruct. 94, 108–118 (2016). https://doi.org/10.1016/j.spmi.2016.03.043

    Article  CAS  Google Scholar 

  61. S. Das, T.L. Alford, Optimization of the zinc oxide electron transport layer in P3HT:PC61BM based organic solar cells by annealing and yttrium doping. RSC Adv. 5(57), 45586–45591 (2015). https://doi.org/10.1039/C5RA05258K

    Article  CAS  Google Scholar 

  62. J.M. Cho et al., Effects of ultraviolet–ozone treatment on organic-stabilized ZnO nanoparticle-based electron transporting layers in inverted polymer solar cells. Org. Electron. 15(9), 1942–1950 (2014). https://doi.org/10.1016/j.orgel.2014.05.016

    Article  CAS  Google Scholar 

Download references

Funding

In order to perform this research, Düzce University’s 2021.05.02.1245 and 2020.05.02.1104 BAP Project has provided support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by KG, AD, ME, and SÖ. The manuscript was written by AK. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Arif Kösemen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1871 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gegin, K., Demir, A., Öztürk, S. et al. Boosting inverted type organic solar cell efficiency through the use of spray coated Y and Sn co-doped zinc oxide nanoparticles as an electron transport layers. J Mater Sci: Mater Electron 34, 1410 (2023). https://doi.org/10.1007/s10854-023-10739-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10739-6

Navigation