Skip to main content
Log in

Insight of yttrium doping on the structural and dielectric characteristics of ZnO nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report on synthesizing rare-earth yttrium oxide-doped ZnO nanoparticles through high-energy planetary milling approach. The impact of varying dopant content in the 3.0, 5.0 to 7.0 wt% range on microstructural, optical and electrical properties of ZnO nanoparticles has been successfully explored. The XRD data showed the existence of a hexagonal wurtzite ZnO phase along with Y2O3 impurity peaks, and the SEM micrographs divulge the development of semi-spherical nanoparticles. The incorporation of Y2O3 dopant in ZnO lattice has been supported by EDS, XPS and Raman analysis. The frequency and composition dependence of dielectric parameters was investigated and interpreted according to the Maxwell Wagner model. The data revealed non-monotonic dependence of the dielectric constant (εr), dielectric loss (tan δ) and AC conductivity and impedance of ZnO with varying dopant content. The variation of the shape of the impedance semicircles and the equivalent circuits between pure and doped ZnO samples prove increased grain boundary resistance due to Y2O3 incorporation. The study reveals that Yttrium-doped ZnO nanostructures are possible potential candidates for application in electronic devices if the dopant’s content is controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that all data generated or analyzed during this study are included in this published article.

References

  1. Ü. Özgür et al., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 11 (2005)

    Article  CAS  Google Scholar 

  2. Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter 16(25), R829 (2004)

    CAS  Google Scholar 

  3. X. Wang et al., Large-scale synthesis of six-nanometer-wide ZnO nanobelts. J. Phys. Chem. B 108(26), 8773–8777 (2004)

    Article  CAS  Google Scholar 

  4. X. Li et al., Facile preparation of ZnO/Ag2CO3 heterostructured nanorod arrays with improved photocatalytic activity. J. Phys. Chem. Solids 125, 96–102 (2019)

    Article  CAS  Google Scholar 

  5. J. Yang et al., Tunable deep-level emission in ZnO nanoparticles via yttrium doping. J. Alloys Compd. 509(8), 3606–3612 (2011)

    Article  CAS  Google Scholar 

  6. M. Gao et al., Enhancement of optical properties and donor-related emissions in Y-doped ZnO. Superlattices Microstruct. 52(1), 84–91 (2012)

    Article  CAS  Google Scholar 

  7. S. Anandan, S. Muthukumaran, Influence of Yttrium on optical, structural and photoluminescence properties of ZnO nanopowders by sol–gel method. Opt. Mater. 35(12), 2241–2249 (2013)

    Article  CAS  Google Scholar 

  8. O. Kaygili et al., Structural and dielectric properties of yttrium-substituted hydroxyapatites. Mater. Sci. Eng. C 47, 333–338 (2015)

    Article  CAS  Google Scholar 

  9. M.A. Yousuf et al., The impact of yttrium cations (Y3+) on structural, spectral and dielectric properties of spinel manganese ferrite nanoparticles. Ceram. Int. 45(8), 10936–10942 (2019)

    Article  CAS  Google Scholar 

  10. S.-K. Kim et al., Highly efficient yttrium-doped ZnO nanorods for quantum dot-sensitized solar cells. Appl. Surf. Sci. 365, 136–142 (2016)

    Article  CAS  Google Scholar 

  11. S. Heo et al., Effects of Y contents on surface, structural, optical, and electrical properties for Y-doped ZnO thin films. Thin Solid Films 558, 27–30 (2014)

    Article  CAS  Google Scholar 

  12. T. Jun et al., Bias stress stable aqueous solution derived Y-doped ZnO thin film transistors. J. Mater. Chem. 21(35), 13524–13529 (2011)

    Article  CAS  Google Scholar 

  13. W. Guo et al., Hollow, porous, and yttrium functionalized ZnO nanospheres with enhanced gas-sensing performances. Sens. Actuators B 178, 53–62 (2013)

    Article  CAS  Google Scholar 

  14. H.W. Choi et al., Improved performance of ZnO nanostructured bulk heterojunction organic solar cells with nanowire-density modified by yttrium chloride introduction into solution. Sol. Energy Mater. Sol. Cells 117, 273–278 (2013)

    Article  CAS  Google Scholar 

  15. S. Das, T. Alford, Optimization of the zinc oxide electron transport layer in P 3 HT: PC 61 BM based organic solar cells by annealing and yttrium doping. RSC Adv. 5(57), 45586–45591 (2015)

    Article  CAS  Google Scholar 

  16. P. Wang et al., The electronic structures and optical properties of yttrium-doped zinc oxide with zinc interstitial defects calculated by first-principles. Mater. Sci. Semicond. Process. 36, 36–42 (2015)

    Article  CAS  Google Scholar 

  17. B. Zhao et al., Influence of yttrium dopant on the properties of anatase nanoparticles and the performance of dye-sensitized solar cells. Phys. Chem. Chem. Phys. 17(22), 14836–14842 (2015)

    Article  CAS  Google Scholar 

  18. X.-W. Li et al., Microstructure and mechanical properties of dissimilar pure copper/1350 aluminum alloy butt joints by friction stir welding. Trans. Nonferrous Met. Soc. China 22(6), 1298–1306 (2012)

    Article  CAS  Google Scholar 

  19. M. Irfan, A. Shakoor, Structural, electrical and dielectric properties of dodecylbenzene sulphonic acid doped polypyrrole/nano-Y2O3 composites. J. Inorg. Organomet. Polym. Mater. 30(4), 1287–1292 (2020)

    Article  CAS  Google Scholar 

  20. C. Mrabet et al., Physical properties of La-doped NiO sprayed thin films for optoelectronic and sensor applications. Ceram. Int. 42(5), 5963–5978 (2016)

    Article  CAS  Google Scholar 

  21. C. Wu, Y.C. Zhang, Q. Huang, Solvothermal synthesis of N-doped ZnO microcrystals from commercial ZnO powder with visible light-driven photocatalytic activity. Mater. Lett. 119, 104–106 (2014)

    Article  CAS  Google Scholar 

  22. P. Swarthmore, Powder diffraction file, joint committee on powder diffraction standards. International Center for Diffraction Data. Card, pp. 3–0226 (1972)

  23. P. Kumar et al., Investigation of phase segregation in yttrium doped zinc oxide. Ceram. Int. 41(5), 6734–6739 (2015)

    Article  CAS  Google Scholar 

  24. R. Joshi et al., Structural, optical and ferroelectric properties of V doped ZnO. Appl. Nanosci. 4(5), 531–536 (2014)

    Article  CAS  Google Scholar 

  25. Z.-Y. Ye et al., Structural, electrical, and optical properties of Ti-doped ZnO films fabricated by atomic layer deposition. Nanoscale Res. Lett. 8(1), 1–6 (2013)

    Article  CAS  Google Scholar 

  26. J. Yang et al., Low-temperature growth and optical properties of Ce-doped ZnO nanorods. Appl. Surf. Sci. 255(5), 2646–2650 (2008)

    Article  CAS  Google Scholar 

  27. N. Sinha et al., Y-doped ZnO nanosheets: gigantic piezoelectric response for an ultra-sensitive flexible piezoelectric nanogenerator. Ceram. Int. 44(7), 8582–8590 (2018)

    Article  CAS  Google Scholar 

  28. C.S. Barrett, Structure of metals (McGraw-Hill Book Company, Inc., New York, 1943)

    Google Scholar 

  29. J. Zheng et al., Enhanced UV emission of Y-doped ZnO nanoparticles. Appl. Surf. Sci. 258(18), 6735–6738 (2012)

    Article  CAS  Google Scholar 

  30. V. Mote, Y. Purushotham, B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6(1), 6 (2012)

    Article  Google Scholar 

  31. S. Kumar, V. Singh, A. Tanwar, Structural, morphological, optical and photocatalytic properties of Ag-doped ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 27(2), 2166–2173 (2016)

    CAS  Google Scholar 

  32. T.C. Damen, S. Porto, B. Tell, Raman effect in zinc oxide. Phys. Rev. 142(2), 570 (1966)

    Article  CAS  Google Scholar 

  33. L. Bergman et al., Raman analysis of the configurational disorder in Al x Ga 1–x N films. Appl. Phys. Lett. 71(15), 2157–2159 (1997)

    Article  CAS  Google Scholar 

  34. S. Sharma, G. Exarhos, Raman spectroscopic investigation of ZnO and doped ZnO films, nanoparticles and bulk material at ambient and high pressures. In: Diffusion and Defect Data Part B Solid State Phenomena. (1997) Sci Tech Publications Ltd.

  35. A. Ubaldini, M.M. Carnasciali, Raman characterisation of powder of cubic RE2O3 (RE= Nd, Gd, Dy, Tm, and Lu), Sc2O3 and Y2O3. J. Alloy. Compd. 454(1–2), 374–378 (2008)

    Article  CAS  Google Scholar 

  36. N. Basavegowda et al., Sonochemical green synthesis of yttrium oxide (Y 2 O 3) nanoparticles as a novel heterogeneous catalyst for the construction of biologically interesting 1, 3-thiazolidin-4-ones. Catal. Lett. 147(10), 2630–2639 (2017)

    Article  CAS  Google Scholar 

  37. L. Mariscal-Becerra et al., Structural and luminescent analysis of hafnium-doped yttrium oxide and yttrium-doped hafnium oxide powders and doped with trivalent europium and terbium ions. J. Nanophoton. 12(3), 036013 (2018)

    Article  Google Scholar 

  38. T. Ngo-Duc et al., Vertical ZnO nanowire growth on metal substrates. Nanotechnology 23(19), 194015 (2012)

    Article  CAS  Google Scholar 

  39. S.K. Sharma et al., Diameter and density controlled growth of yttrium functionalized zinc oxide (YZO) nanorod arrays by hydrothermal. Curr. Appl. Phys. 15, S82–S88 (2015)

    Article  Google Scholar 

  40. G. Ingo et al., XPS studies on cerium, zirconium and yttrium valence states in plasma-sprayed coatings. Surf. Interface Anal. 16(1–12), 515–519 (1990)

    Article  CAS  Google Scholar 

  41. A. Modwi et al., Structural and electrical characterization of Ba/ZnO nanoparticles fabricated by co-precipitation. J. Inorg. Organomet. Polym. Mater. 30, 1–12 (2019)

    Google Scholar 

  42. A. Farea et al., Structure and electrical properties of Co0. 5CdxFe2. 5− xO4 ferrites. J. Alloy. Compd. 464(1–2), 361–369 (2008)

    Article  CAS  Google Scholar 

  43. M. Ahmed, E. Ateia, S. El-Dek, Rare earth doping effect on the structural and electrical properties of Mg–Ti ferrite. Mater. Lett. 57(26–27), 4256–4266 (2003)

    Article  CAS  Google Scholar 

  44. S. Bernik, S. Macek, B. Ai, Microstructural and electrical characteristics of Y2O3-doped ZnO–Bi2O3-based varistor ceramics. J. Eur. Ceram. Soc. 21(10–11), 1875–1878 (2001)

    Article  CAS  Google Scholar 

  45. J. He, J. Hu, Y. Lin, ZnO varistors with high voltage gradient and low leakage current by doping rare-earth oxide. Sci. China Ser. E: Technol. Sci. 51(6), 693–701 (2008)

    Article  CAS  Google Scholar 

  46. J. He et al., AC ageing characteristics of Y2O3-doped ZnO varistors with high voltage gradient. Mater. Lett. 65(17–18), 2595–2597 (2011)

    Article  CAS  Google Scholar 

  47. E. Luna-Arredondo et al., Indium-doped ZnO thin films deposited by the sol–gel technique. Thin Solid Films 490(2), 132–136 (2005)

    Article  CAS  Google Scholar 

  48. Z. Yin et al., Structural, magnetic properties and photoemission study of Ni-doped ZnO. Solid State Commun. 135(7), 430–433 (2005)

    Article  CAS  Google Scholar 

  49. A. Yildiz et al., Ni doping effect on electrical conductivity of ZnO nanocrystalline thin films. J. Mater. Sci.: Mater. Electron. 22(9), 1473–1478 (2011)

    CAS  Google Scholar 

  50. M.N. Siddique, A. Ahmed, P. Tripathi, Electric transport and enhanced dielectric permittivity in pure and Al doped NiO nanostructures. J. Alloy. Compd. 735, 516–529 (2018)

    Article  CAS  Google Scholar 

  51. S. Elliott, A theory of ac conduction in chalcogenide glasses. Phil. Mag. 36(6), 1291–1304 (1977)

    Article  CAS  Google Scholar 

  52. E. Kohnke, Electrical and optical properties of natural stannic oxide crystals. J. Phys. Chem. Solids 23(11), 1557–1562 (1962)

    Article  CAS  Google Scholar 

  53. M. Buraidah et al., Ionic conductivity by correlated barrier hopping in NH4I doped chitosan solid electrolyte. Physica B 404(8–11), 1373–1379 (2009)

    Article  CAS  Google Scholar 

  54. A.K. Jonscher, Dielectric relaxation in solids. J. Phys. D: Appl. Phys. 32(14), R57 (1999)

    Article  CAS  Google Scholar 

  55. S. Elliott, AC conduction in chalcogenide glasses, in Structure and bonding in noncrystalline solids. (Springer, Boston, 1986), pp. 251–284

    Chapter  Google Scholar 

  56. C. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121 (1951)

    Article  CAS  Google Scholar 

  57. I. Gul et al., Structural, magnetic and electrical properties of Co1− xZnxFe2O4 synthesized by co-precipitation method. J. Magn. Magn. Mater. 311(2), 494–499 (2007)

    Article  CAS  Google Scholar 

  58. R. Zamiri et al., Er doped ZnO nanoplates: synthesis, optical and dielectric properties. Ceram. Int. 40(1), 1635–1639 (2014)

    Article  CAS  Google Scholar 

  59. C. Fanggao et al., Effect of gadolinium substitution on dielectric properties of bismuth ferrite. J. Rare Earths 24(1), 273–276 (2006)

    Article  Google Scholar 

  60. H. Frohlick, Theory of Dielectrics (Oxford University Press, Oxford, 1956)

    Google Scholar 

  61. M. Ghosh, C. Rao, Solvothermal synthesis of CdO and CuO nanocrystals. Chem. Phys. Lett. 393(4–6), 493–497 (2004)

    Article  CAS  Google Scholar 

  62. C. Liu, X. Zu, W. Zhou, Magnetic interaction in Co-doped SnO2 nano-crystal powders. J. Phys.: Condens. Matter 18(26), 6001 (2006)

    CAS  Google Scholar 

  63. M. Kotkata, F. Abdel-Wahab, H. Maksoud, Investigations of the conduction mechanism and relaxation properties of semiconductor Sm doped a-Se films. J. Phys. D Appl. Phys. 39(10), 2059 (2006)

    Article  CAS  Google Scholar 

  64. M.M. Hassan et al., Structural and frequency dependent dielectric properties of Fe3+ doped ZnO nanoparticles. Mater. Res. Bull. 47(12), 3952–3958 (2012)

    Article  CAS  Google Scholar 

  65. R. Zamiri et al., Structural and dielectric properties of Al-doped ZnO nanostructures. Ceram. Int. 40(4), 6031–6036 (2014)

    Article  CAS  Google Scholar 

  66. F. Alam et al., Synthesis, structural, optical and electrical properties of in-situ synthesized polyaniline/silver nanocomposites. Funct. Mater. Lett. 5(03), 1250026 (2012)

    Article  CAS  Google Scholar 

  67. N. Divya, P. Aparna, P. Pradyumnan, Dielectric properties of Er 3+ doped ZnO nanocrystals. Adv. Mater. Phys. Chem. 5(08), 287 (2015)

    Article  Google Scholar 

  68. A. Zankat et al., Frequency and temperature dependent electrical properties of ZnO–SnO2 nanocomposites. Physica B 617, 413140 (2021)

    Article  CAS  Google Scholar 

  69. H. Wang et al., Effect of sintering process on the electrical properties and microstructure of Ca-doped ZnO varistor ceramics. Mater. Sci. Semicond. Process. 133, 105880 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University, Saudi Arabia, Grant No. (20-13-12-017).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Arafat Toghan or A. Modwi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or any competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toghan, A., Modwi, A., Mostafa, A.M. et al. Insight of yttrium doping on the structural and dielectric characteristics of ZnO nanoparticles. J Mater Sci: Mater Electron 33, 18167–18179 (2022). https://doi.org/10.1007/s10854-022-08673-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08673-0

Navigation