Skip to main content

Advertisement

Log in

Chitosan-derived graphitic carbon@Fe3C as anode materials for lithium ion battery

  • Materials for Energy Storage
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Chitosan-based carbon materials have attracted great attention in electrochemical energy storage. Introducing iron metal or iron compounds into carbon materials favors to boost their electrochemical performance. Herein, chitosan-based graphitic carbon@Fe3C composites (CSGC@Fe3C) have been prepared as anode materials for lithium ion battery by a simple pyrolysis method. By manipulating the temperature higher than 700 °C, pure Fe3C encapsulated in chitosan-based graphitic carbon with different mass ratio from 30 to 53.8 wt% can be achieved. The resulting CSGC@Fe3C composites retain porous carbon sheet structure embedded with a large amount of Fe3C nanoparticles in size from 20 to 300 nm. The electrochemical measurements demonstrate CSGC@Fe3C with 53.8 wt% Fe3C as anode material for lithium ion battery can provide a highest reversible capacity of 423 mAh g−1 at 0.1 A g−1 over 100 charge/discharge cycles and stable cycling capacity of 195 mAh g−1 at a high current density of 2 A g−1 during 200 cycles. The catalysis of Fe3C on the reversible formation and decomposition of solid electrolyte interphase (SEI) has been corroborated and results in the improvement of surface capacitive contribution. This work provides a basic insight into metal carbides constructing biomass-based carbon anode materials to realize high-performance electrochemical energy storage device.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Jin C, Nai J, Sheng O, Yuan H, Zhang W, Tao X et al (2021) Biomass-based materials for green lithium secondary batteries. Energy Environ Sci 14(3):1326–1379. https://doi.org/10.1039/d0ee02848g

    Article  CAS  Google Scholar 

  2. Al Rai A, Yanilmaz M (2021) High-performance nanostructured bio-based carbon electrodes for energy storage applications. Cellulose 28(9):5169–5218. https://doi.org/10.1007/s10570-021-03881-z

    Article  CAS  Google Scholar 

  3. Luo H, Barrio J, Sunny N, Li A, Steier L, Shah N et al (2021) Progress and perspectives in photo- and electrochemical-oxidation of biomass for sustainable chemicals and hydrogen production. Adv Energy Mater. https://doi.org/10.1002/aenm.202101180

    Article  Google Scholar 

  4. Tang X, Liu D, Wang Y-J, Cui L, Ignaszak A, Yu Y et al (2021) Research advances in biomass-derived nanostructured carbons and their composite materials for electrochemical energy technologies. Prog Mater Sci 118:100770. https://doi.org/10.1016/j.pmatsci.2020.100770

    Article  CAS  Google Scholar 

  5. Thangaraj B, Solomon PR, Chuangchote S, Wongyao N, Surareungchai W (2021) Biomass-derived carbon quantum dots - a review part 2: application in batteries. Chembioeng Rev 8(4):302–325. https://doi.org/10.1002/cben.202000030

    Article  CAS  Google Scholar 

  6. Yuan X, Zhu B, Feng J, Wang C, Cai X, Qin R (2021) Recent advance of biomass-derived carbon as anode for sustainable potassium ion battery. Chem Eng J 405(1):126897. https://doi.org/10.1016/j.cej.2020.126897

    Article  CAS  Google Scholar 

  7. Matsagar BM, Yang R-X, Dutta S, Ok YS, Wu KCW (2021) Recent progress in the development of biomass-derived nitrogen-doped porous carbon. J Mater Chem A 9(7):3703–3728. https://doi.org/10.1039/d0ta09706c

    Article  CAS  Google Scholar 

  8. Senthil C, Lee CW (2021) Biomass-derived biochar materials as sustainable energy sources for electrochemical energy storage devices. Renew Sust Energ Rev 137:110464. https://doi.org/10.1016/j.rser.2020.110464

    Article  CAS  Google Scholar 

  9. Zhou J, Zhang S, Zhou Y-N, Tang W, Yang J, Peng C et al (2021) Biomass-derived carbon materials for high-performance supercapacitors: current status and perspective. Electrochem Energy Rev 4(2):219–248. https://doi.org/10.1007/s41918-020-00090-3

    Article  CAS  Google Scholar 

  10. Ali A, Ahmed S (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286. https://doi.org/10.1016/j.ijbiomac.2017.12.078

    Article  CAS  Google Scholar 

  11. Pella MCG, Lima-Tenorio MK, Neto ETT, Guilherme MR, Muniz EC, Rubira AF (2018) Chitosan-based hydrogels: from preparation to biomedical applications. Carbohydr Polym 196:233–245. https://doi.org/10.1016/j.carbpol.2018.05.033

    Article  CAS  Google Scholar 

  12. Vorobiov VK, Smirnov MA, Bobrova NV, Sokolova MP (2021) Chitosan-supported deep eutectic solvent as bio-based electrolyte for flexible supercapacitor. Mater Lett 283:128889. https://doi.org/10.1016/j.matlet.2020.128889

    Article  CAS  Google Scholar 

  13. Huang XJ, Luo BC, Liu CF, Zhong LX, Ye DD, Wang XY (2021) Quaternized chitosan-assisted in situ synthesized CuS/cellulose nanofibers conductive paper for flexible electrode. Nano Res 14(7):2390–2397. https://doi.org/10.1007/s12274-020-3240-8

    Article  CAS  Google Scholar 

  14. Hamsan MH, Nofal MM, Aziz SB, Brza MA, Dannoun EMA, Murad AR et al (2021) Plasticized polymer blend electrolyte based on chitosan for energy storage application: structural, circuit modeling. Morphol Electrochem Prop Polym 13(8):1233. https://doi.org/10.3390/polym13081233

    Article  CAS  Google Scholar 

  15. Wu Q, Hu J, Cao S, Yu S, Huang L (2020) Heteroatom-doped hierarchical porous carbon aerogels from chitosan for high performance supercapacitors. Int J Biol Macromol 155:131–141. https://doi.org/10.1016/j.ijbiomac.2020.03.202

    Article  CAS  Google Scholar 

  16. Wang J, Cheng YF, Liu Z, Cao WP, Wang S, Xu HB (2020) Fabrication of hybrid CoMoO4-NiMoO4 nanosheets by chitosan hydrogel assisted calcinations method with high electrochemical performance. J Sol-Gel Sci Technol 93(1):131–141. https://doi.org/10.1007/s10971-019-05156-3

    Article  CAS  Google Scholar 

  17. Nistico R, Guerretta F, Benzi P, Magnacca G (2020) Chitosan-derived biochars obtained at low pyrolysis temperatures for potential application in electrochemical energy storage devices. Int J Biol Macromol 164:1825–1831. https://doi.org/10.1016/j.ijbiomac.2020.08.017

    Article  CAS  Google Scholar 

  18. Aziz SB, Hamsan MH, Nofal MM, Karim WO, Brevik I, Brza MA et al (2020) Structural, impedance and electrochemical characteristics of electrical double layer capacitor devices based on chitosan: dextran biopolymer blend electrolytes. Polymers 12(6):1411. https://doi.org/10.3390/polym12061411

    Article  CAS  Google Scholar 

  19. Teimuri-Mofrad R, Hadi R, Abbasi H, Baj RFB (2019) Synthesis, characterization and electrochemical study of carbon nanotube/chitosan-ferrocene nanocomposite electrode as supercapacitor material. J Electron Mater 48(7):4573–4581. https://doi.org/10.1007/s11664-019-07226-2

    Article  CAS  Google Scholar 

  20. Zhang Y, Zhu JY, Ren HB, Bi YT, Zhang L (2017) Facile synthesis of nitrogen-doped graphene aerogels functionalized with chitosan for supercapacitors with excellent electrochemical performance. Chin Chem Lett 28(5):935–942. https://doi.org/10.1016/j.cclet.2017.01.023

    Article  CAS  Google Scholar 

  21. Gao HC, Zhou WD, Jang JH, Goodenough JB (2016) Cross-linked chitosan as a polymer network binder for an antimony anode in sodium-ion batteries. Adv Energy Mater 6(6):1502130. https://doi.org/10.1002/aenm.201502130

    Article  CAS  Google Scholar 

  22. Asnawi A, Aziz SB, Nofal MM, Yusof YM, Brevik I, Hamsan MH et al (2020) Metal complex as a novel approach to enhance the amorphous phase and improve the edlc performance of plasticized proton conducting chitosan-based polymer electrolyte. Membranes 10(6):132. https://doi.org/10.3390/membranes10060132

    Article  CAS  Google Scholar 

  23. Han JY, Huang Y, Chen Y, Song AM, Deng XH, Liu B et al (2020) High-performance gel polymer electrolyte based on chitosan-lignocellulose for lithium-ion batteries. ChemElectroChem 7(5):1213–1224. https://doi.org/10.1002/celc.202000007

    Article  CAS  Google Scholar 

  24. Meng T, Zeng RH, Sun ZQ, Yi FY, Shu D, Li KW et al (2018) Chitosan-confined synthesis of N-doped and carbon-coated Li4Ti5O12 nanoparticles with enhanced lithium storage for lithium-ion batteries. J Electrochem Soc 165(5):A1046–A1053. https://doi.org/10.1149/2.0901805jes

    Article  CAS  Google Scholar 

  25. Liu X, Wang ZX, Guo HJ, Li XH, Zhou R, Zhou Y (2017) Chitosan: A N-doped carbon source of silicon-based anode material for lithium ion batteries. Ionics 23(9):2311–2318. https://doi.org/10.1007/s11581-017-2073-2

    Article  CAS  Google Scholar 

  26. Nowak AP, Gazda M, Lapinski M, Zarach Z, Trzcinski K, Szkoda M et al (2021) Tin oxide encapsulated into pyrolyzed chitosan as a negative electrode for lithium ion batteries. Materials 14(5):1156. https://doi.org/10.3390/ma14051156

    Article  CAS  Google Scholar 

  27. Xu X, Hao Z, Wang H, Xie Y, Liu J, Yan H (2018) A facile synthetic route of nitrogen-doped graphite derived from chitosan for modifying LiFePO4 cathode. J Mater Sci-Mater El 29(19):16630–16638. https://doi.org/10.1007/s10854-018-9755-z

    Article  CAS  Google Scholar 

  28. Li Q, Yuan M, Wang Y, Gao X, Li X, Yao M et al (2021) Designing and preparing carbon anode materials modified with N and Fe-nanoparticle: creating the interior electric field to improve their electrochemical performance. Electrochim Acta 383:138367. https://doi.org/10.1016/j.electacta.2021.138367

    Article  CAS  Google Scholar 

  29. Chen D, Feng C, Han Y, Yu B, Chen W, Zhou Z et al (2020) Origin of extra capacity in the solid electrolyte interphase near high-capacity iron carbide anodes for Li ion batteries. Energy Environ Sci 13(9):2924–2937. https://doi.org/10.1039/c9ee04062e

    Article  CAS  Google Scholar 

  30. Xiang T, Chen Z, Rao Z et al (2021) Hierarchical Fe/Fe3C/C nanofibers as anodes for high capacity and rate in lithium ion batteries. Ionics 27:3663–3669. https://doi.org/10.1007/s11581-021-04142-6

    Article  CAS  Google Scholar 

  31. Lai Y, Chen W, Zhang Z, Qu Y, Gan Y, Li J (2016) Fe/Fe3C decorated 3-D porous nitrogen-doped graphene as a cathode material for rechargeable Li–O2 batteries. Electrochim Acta 191:733–742. https://doi.org/10.1016/j.electacta.2016.01.134

    Article  CAS  Google Scholar 

  32. Lai Y, Jiao Y, Song J, Zhang K, Li J, Zhang Z (2018) Fe/Fe3C@graphitic carbon shell embedded in carbon nanotubes derived from Prussian blue as cathodes for Li–O2 batteries. Mater Chem Front 2(2):376–384. https://doi.org/10.1039/c7qm00503b

    Article  CAS  Google Scholar 

  33. Jia JC, Yang HJ, Wang GX, Huang P, Cai PW, Wen ZH (2018) Fe/Fe3C nanoparticles embedded in nitrogen-doped carbon nanotubes as multifunctional electrocatalysts for oxygen catalysis and CO2 reduction. Chem Electro Chem 5(3):471–477. https://doi.org/10.1002/celc.201701179

    Article  CAS  Google Scholar 

  34. Shen W, Kou W, Liu Y, Dai Y, Zheng W, He G et al (2019) Fe3C-doped asymmetric porous carbon membrane binder-free integrated materials as high performance anodes of lithium-ion batteries. Chem Eng J 368:310–320. https://doi.org/10.1016/j.cej.2019.02.199

    Article  CAS  Google Scholar 

  35. Huang Y-G, Lin X-L, Zhang X-H, Pan Q-C, Yan Z-X, Wang H-Q et al (2015) Fe3C@carbon nanocapsules/expanded graphite as anode materials for lithium ion batteries. Electrochim Acta 178:468–475. https://doi.org/10.1016/j.electacta.2015.08.054

    Article  CAS  Google Scholar 

  36. Xie QX, Zhang YF, Xie DL, Zhao P (2020) Nitrogen-enriched graphitic carbon encapsulated Fe3O4/Fe3C/Fe composite derived from EDTA-Fe(III) sodium complex as LiBs anodes with boosted performance. J Electroanal Chem 857:113749. https://doi.org/10.1016/j.jelechem.2019.113749

    Article  CAS  Google Scholar 

  37. Liu XG, Li XL, Sun YP, Zhang SH, Wu YY (2019) Onion-like carbon coated Fe3C nanocapsules embedded in porous carbon for the stable lithium-ion battery anode. Appl Surf Sci 479:318–325. https://doi.org/10.1016/j.apsusc.2019.02.098

    Article  CAS  Google Scholar 

  38. Liu YL, Haridas AK, Sun Y, Heo J, Ahn JH, Lee Y (2020) Biomass-derived graphitic carbon encapsulated Fe/Fe3C composite as an anode material for high-performance lithium ion batteries. Energies 13:827. https://doi.org/10.3390/en13040827

    Article  CAS  Google Scholar 

  39. Zhao C, Fan R, Murugesan B, Xu Y, Ma J, Yao J et al (2021) Uniformly inserted Fe3C nanoparticles in sericin-derived hierarchical porous carbon for high-performance Li-ion battery. J Alloys Compd 881:160661. https://doi.org/10.1016/j.jallcom.2021.160661

    Article  CAS  Google Scholar 

  40. Xiao F, Chen X, Zhang J, Huang C, Hu T, Hong B et al (2020) Large-scale production of holey graphite as high-rate anode for lithium ion batteries. J Energy Chem 48:122–127. https://doi.org/10.1016/j.jechem.2019.12.026

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the research project of Hubei Provincial Department of Education (D2019174, 2019CFC905), the National Natural Science Foundation of China (51203125), the Innovation Platform Research Funds of Wuhan Textile University (193052), the open fund of Hubei key laboratory of biomass fiber and ecological dyeing and finishing(STRZ201906) .

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junjun Peng or Ming Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Zhang, Y., Xiong, J. et al. Chitosan-derived graphitic carbon@Fe3C as anode materials for lithium ion battery. J Mater Sci 57, 9939–9954 (2022). https://doi.org/10.1007/s10853-021-06741-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06741-0

Navigation