Skip to main content
Log in

Synthesis, structure, and luminescence properties of a new Eu3+-doped Ca3Tb7(BO4)(SiO4)5O oxyapatite red phosphor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of Eu3+-doped Ca3Tb7(BO4)(SiO4)5O red phosphors with apatite structure have been synthesized via high-temperature solid-state method. It could be concluded from XRD results that pure Ca3Tb7(BO4)(SiO4)5O: Eu3+ phase was obtained. The structure refinement results confirmed that the space group of Ca3Tb7(BO4)(SiO4)5O: Eu3+ was P63/m and Eu3+ tended to replace some of Tb3+ in [Ca0.573Tb0.427O9]. Morphology and structural analysis were carried out by scanning electron microscopy (SEM), high transmission electron microscope (HTEM), selected area electron diffraction (SAED), Fourier transform infrared (FTIR), and Raman spectroscopy. The strongest emission peak of the emission spectrum under 259 nm excitation was located at 614 nm, which corresponded to the characteristic emission peak of Eu3+. When the doping concentration of Eu3+ was higher than 0.8 mol%, the concentration quenching effect occurred. Tb3+ ions served as the sensitizer transferred the absorbed energy to Eu3+ ions effectively with the maximum transfer efficiency of 89.36%. The temperature-dependent photoluminescence emission spectra exhibited it possessed good thermal stability. The fabricated LED device combining Ca3Tb7(BO4)(SiO4)5O: 0.8 molEu3+ with a 265 nm UV chip emitted brilliant red light. Ca3Tb7(BO4)(SiO4)5O: Eu3+ provided a new choice for red phosphors used in w-LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data generated or analyzed during the current study are included in the manuscript or available from the corresponding author.

References

  1. Y. Wei, H. Yang, Z.Y. Gao, Y.X. Liu, G.C. Xing, P.P. Dang, A.A. Kheraif, G.G. Li, J. Lin, R.S. Liu, Adv. Sci. 7, 1903060 (2020)

    Article  CAS  Google Scholar 

  2. J.W. Chen, H.Y. Xiang, J. Wang, R. Wang, Y. Li, Q.S. Shan, X.B. Xu, Y.H. Dong, C.T. Wei, H.B. Zeng, ACS Nano 15, 17150 (2021)

    Article  CAS  Google Scholar 

  3. L. Huang, Y. Liu, J.B. Yu, Y.W. Zhu, F.J. Pan, T.T. Xuan, M.G. Brik, C.X. Wang, J. Wang, Acs Appl. Mater. Interfaces 10, 18082 (2018)

    Article  CAS  Google Scholar 

  4. S. Shu, Y. Wang, Y. Ke, B. Deng, R. Liu, Q. Song, J. Wang, R. Yu, J. Alloys Compd. 848, 156359 (2020)

    Article  CAS  Google Scholar 

  5. C. Dong, Y.J. Zhang, J.J. Duan, J.J. Yu, J. Mater. SCI: Mater. Electron. 30, 16384–16394 (2019)

    CAS  Google Scholar 

  6. Z.G. Xia, Z.H. Xu, M.Y. Chen, Q.L. Liu, Dalton Trans. 45, 11214 (2016)

    Article  CAS  Google Scholar 

  7. E.F. Schubert, J.K. Kim, Science 308, 1247 (2005)

    Article  Google Scholar 

  8. S.X. Li, M.J. Xu, L.X. Wang, D.Z. Jia, N.N. Guo, C.C. Ji, H.J. Wu, Opt. Mater. 107, 110151 (2020)

    Article  CAS  Google Scholar 

  9. B.Y. Qu, J.T. Wang, K. Liu, R.L. Zhou, L. Wang, Phys. Chem. Chem. Phys. 21, 25118 (2019)

    Article  CAS  Google Scholar 

  10. Z.B. Lin, H. Lin, J. Xu, F. Huang, H. Chen, B. Wang, Y.S. Wang, J. Alloys Compd. 649, 661 (2015)

    Article  CAS  Google Scholar 

  11. Y.G. Yang, X.P. Wang, B. Liu, Y.Y. Zhang, X.S. Lv, J. Li, S. Li, L. Wei, H.D. Zhang, C. Zhang, J. Lumin. 204, 157 (2018)

    Article  CAS  Google Scholar 

  12. P.K. Sahu, M. Ramrakhiani, S. Agrawal, J. Fluoresc. 29, 1249 (2019)

    Article  CAS  Google Scholar 

  13. J.S. Zhong, D.Q. Chen, W.G. Zhao, Y. Zhou, H. Yu, L.F. Chen, Z.G. Ji, J. Mater. Chem. C 3, 4500 (2015)

    Article  CAS  Google Scholar 

  14. S.H. Wang, Y.Q. Xu, T. Chen, W.H. Jiang, J.M. Liu, X. Zhang, W. Jiang, L.J. Wang, Chem. Eng. J. 404, 125912 (2021)

    Article  CAS  Google Scholar 

  15. X. Li, C. Yang, Q.S. Liu, X.C. Wang, X.Y. Mi, Ceram. Int. 46, 17376 (2020)

    Article  CAS  Google Scholar 

  16. J.Y. Ding, Q.S. Wu, Y.Y. Li, Q. Long, X.L. Ma, Y.H. Wang, J. Phys. Chem. C 121, 10102 (2017)

    Article  CAS  Google Scholar 

  17. G. Zhu, Z.P. Ci, Y.R. Shi, M.D. Que, Q. Wang, Y.H. Wang, J. Mater. Chem. C 1, 5960 (2013)

    Article  CAS  Google Scholar 

  18. C. Hecht, F. Stadler, P.J. Schmidt, J.S. Günne, V. Baumann, W. Schnick, Chem. Mater. 21, 1595–1601 (2009)

    Article  CAS  Google Scholar 

  19. F. Liao, B.Q. Shen, W.W. Wu, Y.P. Zhang, J.X. Hu, Ind. Eng. Chem. Res. 60, 2931 (2021)

    Article  CAS  Google Scholar 

  20. B.C. Babu, G.G. Wang, A.P. Baker, B.L. Wang, J. Alloys Compd. 766, 74 (2018)

    Article  Google Scholar 

  21. P.S. Khan, B.C. Jamalaiah, M. Jayasimha, H. Kaur, N. Madhu, P. Raghupathi, Optik 260, 169141 (2022)

    Article  Google Scholar 

  22. X. Huang, W.T. Zhang, X.M. Wang, J.Y. Zhang, X. Gao, H.Y. Du, J. Colloid Interface Sci. 608, 3204 (2022)

    Article  CAS  Google Scholar 

  23. S.J. Wang, C.C. Xu, X.B. Qiao, Ceram. Int. 47, 1063–1075 (2021)

    Article  CAS  Google Scholar 

  24. B. Yu, Y.C. Li, R.P. Zhang, H. Li, Y.J. Wang, J. Alloys Compd. 852, 157020 (2021)

    Article  CAS  Google Scholar 

  25. Q. Zhang, X.C. Wang, Y.H. Wang, Inorg. Chem. Front. 7, 1034–1045 (2020)

    Article  CAS  Google Scholar 

  26. S.A. Zhang, Y.X. Li, W.F. Li, Z.Z. Li, M.F. Qiu, Z.F. Mu, Y. Li, Y.H. Hu, Curr. Appl. Phys. 19, 1052 (2019)

    Article  CAS  Google Scholar 

  27. X. Huang, B. Li, P. Du, H. Guo, R. Cao, J.S. Yu, K. Wang, X.W. Sun, Dyes Pigm. 151, 202–210 (2018)

    Article  CAS  Google Scholar 

  28. X. Zhang, F. Mo, Z.C. Wu, Y. Chen, J. Mater. SCI. 53, 3613–3623 (2018)

    Article  CAS  Google Scholar 

  29. T. Tian, W. Liu, Q. Liu, Y. Zhang, Y.Q. Chu, G. Liu, J.Y. Xu, J. Rare Earths 40, 709 (2021)

    Article  Google Scholar 

  30. P. Halappa, H.M. Rajashekar, C. Shivakumara, J. Alloys Compd. 785, 169–177 (2019)

    Article  CAS  Google Scholar 

  31. Z.G. Xia, J. Zhou, Z.Y. Mao, J. Mater. Chem. C. 1, 5917 (2013)

    Article  CAS  Google Scholar 

  32. A. Mathur, P. Halappa, C. Shivakumara, J. Mater. SCI: Mater. Electron. 29, 19951–19964 (2018)

    CAS  Google Scholar 

  33. I. Perhaita, L.E. Muresan, D.T. Silipas, G. Borodi, Y. Karabulut, J.G. Guinea, M. Ayvacikli, N. Can, Appl. Rdiat. Isotopes. 130, 188–197 (2017)

    Article  CAS  Google Scholar 

  34. P.L. You, Adv. Mater. Res. 919–921, 2052–2056 (2014)

    Article  Google Scholar 

  35. V.R. Panse, N.S. Kokode, A.N. Yerpude, S.J. Dhoble, Optik 127, 1603–1606 (2016)

    Article  CAS  Google Scholar 

  36. S. Ram, K. Ram, J. Mater. SCI. 23, 4541–4546 (1988)

    Article  CAS  Google Scholar 

  37. M. Maczka, A. Waśkowska, A. Majchrowski, J. Zmija, J. Hanuza, G.A. Peterson, D.A. Keszler, J. Solid. State. Chem. 180, 410–419 (2007)

    Article  CAS  Google Scholar 

  38. Y.J. Jiang, Y. Wang, L.Z. Zeng, J. Raman. Spectrosc. 27, 601–607 (1996)

    Article  CAS  Google Scholar 

  39. H.K. Liu, Y. Luo, Z.Y. Mao, L.B. Liao, Z.G. Xia, J. Mater. Chem. C. 2, 1619 (2014)

    Article  CAS  Google Scholar 

  40. V.R. Panse, A. Shukla, S.V. Panse, N.S. Dhoble, S.J. Dhoble, J. Mater. SCI. Mater. Electron. 28, 2193–2199 (2017)

    Article  CAS  Google Scholar 

  41. P. Biswas, V. Kumar, Kamni. Mater. Today: Proc. 28, 1018 (2020)

    CAS  Google Scholar 

  42. P. Halappa, A. Mathur, M.H. Delville, C. Shivakumara, J. Alloys Compd. 740, 1086–1098 (2018)

    Article  CAS  Google Scholar 

  43. Z.B. Guo, B. Milicevic, J.J. Feng, L. Zhou, F. Yao, S.C. Huang, Z.C. Wu, W.U. Khan, J.X. Shi, M.M. Wu, J. Alloys Compd. 837, 155438 (2020)

    Article  CAS  Google Scholar 

  44. J.P. Yuan, Y. Zhang, J.Y. Xu, T. Tian, K.K. Luo, L.W. Huang, J. Alloys Compd. 815, 152656 (2020)

    Article  CAS  Google Scholar 

  45. P.I. Paulose, G. Jose, V. Thomas, N.V. Unnikrishnan, M.K.R. Warrier, J. Phys. Chem. Solids 64, 841 (2003)

    Article  CAS  Google Scholar 

  46. J. Zhou, Z.G. Xia, J. Mater. Chem. C 2, 6978 (2014)

    Article  CAS  Google Scholar 

  47. K. Ding, A. Siru, S. Pang, L.Y. Shan, Y.Q. Zhang, P.F. Sun, B. Deng, R.J. Yu, J. Rare Earths 39, 749 (2021)

    Article  CAS  Google Scholar 

  48. P. Du, J.S. Yu, Rsc. Adv. 5, 60121–60127 (2015)

    Article  CAS  Google Scholar 

  49. J. Zhong, D.Q. Chen, H.X. Xu, W.G. Zhao, J. Sun, Z.J. Ji, J. Alloys Compd. 695, 311 (2017)

    Article  CAS  Google Scholar 

  50. K. Nie, X.X. Ma, P.L. Lin, N. Kumar, L.X. Wang, L.F. Mei, J. Rare Earths 7, 1320–1326 (2021)

    Article  Google Scholar 

  51. R.J. Yu, J.H. Jeong, Y.F. Wang, J. Am. Ceram. Soc. 100, 5649–5658 (2017)

    Article  CAS  Google Scholar 

  52. B. Deng, S.H. Liu, C.S. Zhou, H. Liu, J. Chen, R.J. Yu, Chem. Eur. J. 24, 1–11 (2018)

    Article  Google Scholar 

  53. X.Y. Huang, S.Y. Wang, B. Li, Q. Sun, H. Guo, Opt. Lett. 43, 1307 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by Natural Science Foundation of Shanghai (22ZR1460600) and National Natural Science Foundation of China (61605116 and 51972208).

Funding

Natural Science Foundation of Shanghai, 22ZR1460600, Tian Tian, National Natural Science Foundation of China, 61605116, Tian Tian, 51972208, Tian Tian.

Author information

Authors and Affiliations

Authors

Contributions

TT contributed to the study conception and design and the funding acquisition. YZ and YL contributed to the methodology and experimental resources. Material preparation, data collection, and analysis were performed by YC and WL. The first draft of the manuscript was written by YC, TT, and YL. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Tian Tian or Ying Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Tian, T., Liu, W. et al. Synthesis, structure, and luminescence properties of a new Eu3+-doped Ca3Tb7(BO4)(SiO4)5O oxyapatite red phosphor. J Mater Sci: Mater Electron 34, 1182 (2023). https://doi.org/10.1007/s10854-023-10589-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10589-2

Navigation