Skip to main content

Advertisement

Log in

Synthesis and optical properties of II–VI semiconductor quantum dots: a review

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The unique architectures of semiconductor quantum dots (QDs) and one-dimensional (1D) nanostructures give rise to a fascinating array of optical and electronic properties, making them useful for numerous industrial and environmental applications. This work reports the latest developments in QD-based nanotechnologies featuring II–VI semiconductor nanostructures with tunable optoelectronic properties. The synthesis of chalcogenide-, oxide-, and alloy-based semiconductor QDs is described in detail. Special attention is given to optical investigations supplemented by density functional theory calculations to explore the energy levels and electronic structure of II–VI semiconductor QDs. Finally, new applications of QDs in the areas of solar cells and optoelectronics are summarized, and the work concludes an assessment of future prospects of II–VI semiconductor QDs and 1D nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data available on request from the authors: The data that support the findings of this study are available from the corresponding author upon reasonable request. Data available in article or supplementary material: The data that supports the findings of this study are available from the corresponding author upon reasonable request. Data openly available in a public repository that issues datasets with DOIs: The data that support the findings of this study are openly available in figures captions at reference numbers [30, 31, 40, 57, 63, 77, 82, 109, 111, 123, 191]. Data openly available in a public repository that does not issue DOIs: The data that support the findings of this study are openly available from the corresponding author upon reasonable request. Data sharing not applicable—no new data generated: Data sharing to this article as new data are created or analyzed in this study. Data generated at a central, large-scale facility: Raw data are generated at the Elsevier large scale facility. Derived data supporting the findings of this study are available from the corresponding author upon reasonable request. Embargo on data due to commercial restrictions: The data that support the findings will be available from the corresponding author upon reasonable request. Data available on request due to privacy/ethical restrictions: The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy restrictions. Data subject to third party restrictions: The data that support the findings of this study are available from Elsevier. Restrictions apply to the availability of these data, which are used under license for this study. Data are available from the authors upon reasonable request and with the permission of Elsevier.

References

  1. C.-Z. Ning, L. Dou, P. Yang, Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2, 17070 (2017)

    Article  CAS  Google Scholar 

  2. B. Zhou, B. Shi, X. Liu, Controlling upconversion nanocrystals for emerging applications. Nat. Nanotech. 10, 924 (2015)

    Article  CAS  Google Scholar 

  3. D. Mocatta et al., Heavily doped semiconductor nanocrystal quantum dots. Sci. 332, 77 (2011)

    Article  CAS  Google Scholar 

  4. B. Michon et al., Thermodynamic signatures of quantum criticality in cuprate superconductors. Nat. 567, 218 (2019)

    Article  CAS  Google Scholar 

  5. J.G. Smith, J.A. Faucheaux, P.K. Jain, Plasmon resonances for solar energy harvesting: a mechanistic outlook. Nano Today 10, 67 (2015)

    Article  CAS  Google Scholar 

  6. Y. Chen et al., Tuning the electronic structures of all-inorganic lead halide perovskite CsPbI3 via heterovalent doping: a first-principles investigation. Chem. Phys. Lett. 722, 90 (2019)

    Article  CAS  Google Scholar 

  7. K.V. Vokhmintcev, P.S. Samokhvalov, I. Nabiev, Charge transfer and separation in photoexcited quantum dot-based systems. Nano Today 11, 189 (2016)

    Article  CAS  Google Scholar 

  8. A. Rakovich et al., Resonance energy transfer improves the biological function of bacteriorhodopsin within a hybrid material built from purple membranes and semiconductor quantum dots. Nano Lett. 10, 2640 (2010)

    Article  CAS  Google Scholar 

  9. V. Krivenkov et al., Two-photon-induced Förster resonance energy transfer in a hybrid material engineered from quantum dots and bacteriorhodopsin. Opt. Lett. 40, 1440 (2015)

    Article  CAS  Google Scholar 

  10. Z. Xia et al., Multiplex detection of protease activity with quantum dot nanosensors prepared by intein-mediated specific bioconjugation. Anal. Chem. 80, 8649 (2014)

    Article  Google Scholar 

  11. S. Saurabh et al., Multiplexed modular genetic targeting of quantum dots”. ACS Nano 8, 11138 (2014)

    Article  CAS  Google Scholar 

  12. Y. Jiang, B. Tian, Inorganic semiconductor biointerfaces. Nat. Rev. Mater. 3, 473 (2018)

    Article  Google Scholar 

  13. S. Abe, R.K. Capek, B. De Geyter, Z. Hens, Reaction chemistry/nanocrystal property relations in the hot injection synthesis, the role of the solute solubility. ACS Nano 7, 943 (2013)

    Article  CAS  Google Scholar 

  14. C.M. Evans, A.M. Love, E.A. Weiss, Surfactant-controlled polymerization of semiconductor clusters to quantum dots through competing step-growth and living chain-growth mechanisms. J. Am. Chem. Soc. 134, 17298 (2012)

    Article  CAS  Google Scholar 

  15. I.C. Baek et al., Ligand-dependent particle size control of PbSe quantum dots. J. Coll. Interf. Sci. 310, 163 (2007)

    Article  CAS  Google Scholar 

  16. R. García-Rodríguez, H. Liu, Dissociation constants of uncharged and monovalent cation acids in dimethyl sulfoxide. J. Am. Chem. Soc. 136, 1968 (2014)

    Article  Google Scholar 

  17. B. Mahler, N. Lequeux, B. Dubertret, Controlled incorporation of particles into the central portion of vesicle walls. J. Am. Chem. Soc. 132, 953 (2010)

    Article  CAS  Google Scholar 

  18. Y. Gao, X. Peng, Unified strategy to monoterpene indole alkaloids: total syntheses of (±)-Goniomitine, (±)-1,2-Dehydroaspidospermidine, (±)-Aspidospermidine, (±)-Vincadifformine, and (±)-Kopsihainanine A. J. Am. Chem. Soc. 136, 6724 (2014)

    Article  CAS  Google Scholar 

  19. Y. Chen et al., Revealing the surface structure of CdSe nanocrystals by dynamic nuclear polarization-enhanced 77Se and 113Cd solid-state NMR spectroscopy. J. Am. Chem. Soc. 143, 8747 (2021)

    Article  CAS  Google Scholar 

  20. D. Bimberg, U.W. Pohl, Quantum dots: promises and accomplishments. Mater. Today 14, 388 (2011)

    Article  CAS  Google Scholar 

  21. D. Liu et al., Silicon nanostructures for solar-driven catalytic applications. Nano Today 17, 96 (2017)

    Article  CAS  Google Scholar 

  22. N. Alnami et al., InAs nanostructures for solar cell: improved efficiency by submonolayer quantum dot. Sol. Energy Mater. Sol. Cells 224, 111026 (2021)

    Article  CAS  Google Scholar 

  23. U. Farooq et al., Bandgap engineering of lead-free ternary halide perovskites for photovoltaics and beyond: recent progress and future prospects. Nano Energy 92, 106710 (2022)

    Article  CAS  Google Scholar 

  24. M.T. Hill, M.C. Gather, Advances in small lasers. Nat. Photonics 8, 908 (2019)

    Article  Google Scholar 

  25. A.F. Kockum et al., Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19 (2019)

    Article  Google Scholar 

  26. A.J. Kollár, A.T. Papageorge, B.L. Lev, Supermode-density-wave-polariton condensation with a Bose-Einstein condensate in a multimode cavity. Nat. Commun. 8, 14386 (2017)

    Article  Google Scholar 

  27. B.R. Nullmeyer, J.W. Kwon, A.Y. Garnov, Self-healing effects in a semi-ordered liquid for stable electronic conversion of high-energy radiation. Scient. Rep. 8, 12404 (2018)

    Article  Google Scholar 

  28. S. Holzinger, C. Schneider, S. Reitzenstein, Quantum-dot micropillar lasers subject to coherent time-delayed optical feedback from a short external cavity. Scient. Rep. 9, 631 (2019)

    Article  Google Scholar 

  29. P. Geiregat, A.J. Houtepen, Z. Hens, Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots. Nat. Mater. 17, 35 (2017)

    Article  Google Scholar 

  30. K. Mukai, K. Shibata, Y. Nakatsuka, M. Ikai, All-silicon photon emitter with colloidal PbS quantum dot in tunable microcavity. Physica E 103, 417 (2018)

    Article  CAS  Google Scholar 

  31. P. Uddandar, R. Mohan, ZnS semiconductor quantum dots production by anendophytic fungus. Mater. Sci. Eng. B 207, 26 (2016)

    Article  Google Scholar 

  32. J. Li, T. Guan, Tu. Datao, W. Lian, P. Zhang, S. Han, F. Wen, X. Chen, Highly efficient NIR-II luminescent I-III–VI semiconductor nanoprobes based on AgInTe2:Zn/ZnS nanocrystals. Chem. Commun. 58, 2204 (2022)

    Article  CAS  Google Scholar 

  33. X.-Y. Wang, Z.-Y. Che, N. Bao, Z. Qing, S.-N. Ding, Recent advances in II-VI quantum dots based-signal strategy of electrochemiluminescence sensor. Talanta Open 5, 100088 (2022)

    Article  Google Scholar 

  34. E.G. Durmusoglu et al., Production of small, stable PbS/CdS quantum dots via room temperature cation exchange followed by a low temperature annealing processes. J. Phys. Chem. C 121, 25520 (2017)

    Article  CAS  Google Scholar 

  35. V. Bommakanti et al., An overview of synthesis, characterization, applications and associated adverse effects of bioactive nanoparticles. Environ. Res. 214, 113919 (2022)

    Article  CAS  Google Scholar 

  36. S.K. Meladom et al., Microwave assisted robust aqueous synthesis of Mn2+-doped CdSe QDs with enhanced electronic properties. RSC Adv. 8, 26771 (2018)

    Article  CAS  Google Scholar 

  37. L.C. He et al., Preparation and characterization of ZnSe quantum dots by the cation-inverting-injection method in aqueous solution. Mater. Techno. 33, 205 (2018)

    Article  CAS  Google Scholar 

  38. Y.C. Cao, Preparation of thermally stable well-dispersed water-soluble CdTe quantum dots in montmorillonite clay host media. J. Coll. Interf. Sci. 368, 139 (2012)

    Article  CAS  Google Scholar 

  39. D. Vaya, B. Kaushik, P.K. Surolia, Recent advances in graphitic carbon nitride semiconductor: Structure, synthesis and applications. Mater. Sci. Semicond. Process. 137, 106181 (2022)

    Article  CAS  Google Scholar 

  40. W. Wei et al., Preparation of quantum dot luminescent materials through the ink approach. Mater. Des. 91, 165 (2016)

    Article  CAS  Google Scholar 

  41. J. Wei, Hu. Zhe, W. Zhou, Lu. Hanxu, W. Zhang, R. Guo, Color-converted white light-emitting diodes based on I-III-VI quantum dots: package strategies and stability promotion. Appl. Mater. Today 29, 101585 (2022)

    Article  Google Scholar 

  42. Wu. Rong, Z. Feng, J. Zhang, L. Jiang, J.-J. Zhu, Quantum dots for electrochemical cytosensing. TrAC, Trends Anal. Chem. 148, 116531 (2022)

    Article  Google Scholar 

  43. A. Lourenço, T. Casimiro, V.D.B. Bonifácio, Reborn water-soluble CdTe quantum dots. Talanta 125, 319 (2014)

    Article  Google Scholar 

  44. M.S. Augstine et al., Excellent UV absorption in spin-coated thin films of oleic acid modified zinc oxide nanorods embedded in polyvinyl alcohol. J. Phys. Chem. Solids 73, 396 (2012)

    Article  Google Scholar 

  45. V. Kumar et al., Influence of ultrasonication times on the tunable colour emission of ZnO nanophosphors for lighting applications. Ultrasonic Sonochem. 21, 1549 (2014)

    Article  CAS  Google Scholar 

  46. W.M. Yang et al., Enhancing luminescence of ZnO quantum dots by PEG and oleic acid via a sol–gel method. J. Mater. Sci. Mater. Electon. 26, 1113 (2015)

    Article  CAS  Google Scholar 

  47. W. Yang et al., Fast synthesize ZnO quantum dots via ultrasonic method. Ultrasonics Sonochem. 30, 103 (2016)

    Article  CAS  Google Scholar 

  48. B. Ortiz-Casas et al., Bio-acceptable 0D and 1D ZnO nanostructures for cancer diagnostics and treatment. Mater. Today 30, 533 (2021)

    Article  Google Scholar 

  49. P. Daniel Dapkus et al., Selective area epitaxy by metalorganic chemical vapor deposition– a tool for photonic and novel nanostructure integration. Prog. Quantum Electron. 75, 100304 (2021)

    Article  Google Scholar 

  50. A.M. Morales, C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Sci. 279, 208 (1998)

    Article  CAS  Google Scholar 

  51. J. Jie et al., One-dimensional II—VI nanostructures: synthesis, properties and optoelectronic applications. Nano Today 5, 313 (2010)

    Article  CAS  Google Scholar 

  52. Z.L. Wang, Nanobelts, nanowires, and nanodiskettes of semiconducting oxides—from materials to nanodevices. Adv. Mater. 15, 432 (2003)

    Article  Google Scholar 

  53. S. Barth et al., Synthesis and applications of one-dimensional semiconductors. Prog. Mater Sci. 55, 563 (2010)

    Article  CAS  Google Scholar 

  54. Y.-C. Chung et al., Synthesis and characterization of CdSxSe1−x alloy quantum dots with composition-dependent band gaps and paramagnetic properties. RSC Adv. 8, 30002 (2018)

    Article  CAS  Google Scholar 

  55. S.M. Kobosko, P.V. Kamat, Wide indium-rich AgInS2–ZnS quantum dots —Ag-/Zn-dependent photophysics and photovoltaics. J. Phys. Chem. C 122, 14336 (2018)

    Article  CAS  Google Scholar 

  56. S.W. Belling, H.L. Cihak, W. Li, Finite element analysis of strain effects on symmetry reduction of semiconductor quantum dots. Superlat. Microstruc. 120, 22 (2018)

    Article  CAS  Google Scholar 

  57. H. Asano, T. Omata, Design of cadmium-free colloidal II–VI semiconductor quantum dots exhibiting RGB emission. AIP Adv. 7, 045309 (2017)

    Article  Google Scholar 

  58. T.K. Das, P. Ilaiyaraja, C. Sudakar, Coexistence of strongly and weakly confined energy levels in (Cd, Zn)Se quantum dots: tailoring the near-band-edge and defect-levels for white light emission. J. App. Phys. 121, 183102 (2017)

    Article  Google Scholar 

  59. X. Fang et al., ZnS nanostructures: from synthesis to applications. Prog. Mater Sci. 56, 175 (2011)

    Article  CAS  Google Scholar 

  60. H. Seiler, S. Palato, P. Kambhampati, Investigating exciton structure and dynamics in colloidal CdSe quantum dots with two-dimensional electronic spectroscopy. J. Chem. Phys. 149, 074702 (2018)

    Article  CAS  Google Scholar 

  61. W. Sukkabot, Atomistic tight-binding computations of the structural and optical properties of CdTe/CdX (X=S and Se)/ZnS core–shell/shell nanocrystals. Philos. Mag. 98, 1360 (2018)

    Article  CAS  Google Scholar 

  62. C. Xia et al., Size-dependent band-gap and molar absorption coefficients of colloidal CuInS2 quantum dots. ACS Nano 12, 8350 (2018)

    Article  CAS  Google Scholar 

  63. D.G. Kim et al., Experimental verification of Forster energy transfer and quantum resonance between semiconductor quantum dots. Curr. App. Phys. 18, S14 (2018)

    Article  Google Scholar 

  64. W.W. Yu, X. Peng, Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew. Chem. 41, 2368 (2002)

    Article  CAS  Google Scholar 

  65. D. Gwi et al., Experimental verification of Förster energy transfer and quantum resonance between semiconductor quantum dots. Curr. Appl. Phys. 18, S14 (2018)

    Article  Google Scholar 

  66. W. Jiang et al., Role of oxygen vacancy in metal oxides for photocatalytic CO2 reduction. Appl. Catal. B 321, 122079 (2023)

    Article  CAS  Google Scholar 

  67. T. Watanabe et al., Synthesis of type-I CdTe core and type-II CdTe/CdS core–shell quantum dots by a hydrothermal method and their optical properties. Bull. Chem. Soc. Jpn. 90, 52 (2017)

    Article  CAS  Google Scholar 

  68. Z.-L. Zeng et al., Preparation and characterization of sodium polyacrylate grafted montmorillonite nanocomposite for the adsorption of cadmium ions form aqueous solution. Colloids Surf., A 656, 130389 (2023)

    Article  CAS  Google Scholar 

  69. H. Zang et al., Thick-shell CuInS2/ZnS quantum dots with suppressed “Blinking” and narrow single-particle emission line widths. Nano Lett. 17, 1787 (2017)

    Article  CAS  Google Scholar 

  70. B.K. Chen et al., Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance. Adv. Fun. Mater. 22, 2081 (2012)

    Article  CAS  Google Scholar 

  71. J. Park, S.W. Kim, CuInS2/ZnS core–shell quantum dots by cation exchange and their blue-shifted photoluminescence. J. Mater. Chem. 21, 3745 (2011)

    Article  CAS  Google Scholar 

  72. F. Fan et al., Harnessing chemical functions of ionic liquids for perovskite solar cells. J. Energy Chem. 68, 797 (2022)

    Article  CAS  Google Scholar 

  73. I.T. Kraatz et al., Sub-bandgap emission and intraband defect-related excited-state dynamics in colloidal CuInS2/ZnS quantum dots revealed by femtosecond pump–dump–probe spectroscopy. J. Phys. Chem. C 118, 24102 (2014)

    Article  CAS  Google Scholar 

  74. Y.A. Alemu et al., Enhanced photoluminescence from CuInS2/ZnS quantum dots: Organic superacid passivation. Mater. Lett. 219, 178 (2018)

    Article  CAS  Google Scholar 

  75. A. Nobuhiro, O. Mohan, S. Mehataa, In situ synthesis of WS2 QDs for sensing of H2O2: quenching and recovery of absorption and photoluminescence. Mater. Today Commun. 34, 105013 (2023)

    Article  Google Scholar 

  76. M.J. Lee et al., Emission of CdSe quantum dots according to the capping ligands. Curr. Appl. Phys. 17, 880 (2017)

    Article  Google Scholar 

  77. P. Mareeswari et al., Rhizopus stolonifer mediated biosynthesis of biocompatible cadmiumchalcogenide quantum dots. Enz. Micro. Techno. 95, 225 (2016)

    Article  CAS  Google Scholar 

  78. H. Lia et al., In-situ reacted multiple-anchoring ligands to produce highly photo-thermal resistant CsPbI3 quantum dots for display backlights. Chem. Eng. J. 454, 140038 (2023)

    Article  Google Scholar 

  79. K.H. Ibnaouf et al., Photoluminescence spectra of CdSe/ZnS quantum dots in solution. Spectrochim. Acta Part A. 121, 339 (2014)

    Article  CAS  Google Scholar 

  80. K.H. Ibnaouf et al., Amplified spontaneous emission spectra from the superexciplex of coumarin 138. Spectrochim. Acta Part A 97, 1145 (2012)

    Article  CAS  Google Scholar 

  81. M.S. Gaponenko et al., Temperature-dependent photoluminescence Stokes shift in PbS quantum dots. Physica E 53, 63 (2013)

    Article  CAS  Google Scholar 

  82. J.Y. Kim et al., One-step formation of core–shell structure based on hydrophobic silane ligands for enhanced luminescent perovskite quantum dots. J. Alloy. Compds. 886, 161347 (2020)

    Article  Google Scholar 

  83. S. Rac et al., Review on recent advances of core-shell structured lead halide perovskites quantum dots. J. Alloy. Compd. 834, 155246 (2020)

    Article  Google Scholar 

  84. M.R. Kara et al., Impact of Zn-doping on the composition, stability, luminescence properties of silica coated all-inorganic cesium lead bromide nanocrystals and their biocompatibility. Mater. Today Chem. 23, 100753 (2022)

    Article  Google Scholar 

  85. A. Ikram, M. Zulfequar, V.R. Satsangi, Role and prospects of green quantum dots in photoelectrochemical hydrogen generation: a review. Int. J. Hydrogen Energy 47, 11472 (2022)

    Article  CAS  Google Scholar 

  86. B. Li et al., Revealing mechanisms of PL properties at high and low temperature regimes in CdSe/ZnS core–shell quantum dots. J. Appl. Phys. 124, 044302 (2018)

    Article  Google Scholar 

  87. C.-Y. Luan et al., Elucidation of luminescent mechanisms of size-controllable MoSe2 quantum dots. Appl. Phys. Lett. 111, 073105 (2017)

    Article  Google Scholar 

  88. B. Fan et al., Analytical model of photon reabsorption in ZnO quantum dots with size and concentration dependent dual-color photoluminescence. J. of Appl. Phys. 121, 054309 (2017)

    Article  Google Scholar 

  89. W. Li et al., Optical properties and charge carrier dynamics of CdTe quantum dots in silicate glasses. J. Appl. Phys. 121, 183104 (2017)

    Article  Google Scholar 

  90. Y. Hu et al., Photoluminescence of ZnS: Mn quantum dot by hydrothermal method. AIP Adv. 8, 015014 (2018)

    Article  Google Scholar 

  91. F. Li et al., White light emitting device based on single-phase CdS quantum dots. Nanotech. 29, 205701 (2018)

    Article  Google Scholar 

  92. M. Isarov et al., Polarized emission in II–VI and perovskite colloidal quantum dots. J. Phys. B 50, 214001 (2017)

    Article  Google Scholar 

  93. Z.T. Banizi, M. Seifi, Optical properties of hydrothermally synthesized TGA-capped CdS nanoparticles: controlling crystalline size and phase. Mater. Res. Exp. 4, 105007 (2017)

    Article  Google Scholar 

  94. T. Lee, K. Shimura, D. Kim, Surface modification effects on defect-related photoluminescence in colloidal CdS quantum dots. Phys. Chem. Chem. Phys. 20, 11954 (2018)

    Article  CAS  Google Scholar 

  95. A.S. Fuhr et al., Light emission mechanisms in CuInS2 quantum dots evaluated by spectral electrochemistry. ACS Photo. 4, 2425 (2017)

    Article  CAS  Google Scholar 

  96. H. Asano et al., Colloidal Zn(Te, Se)/ZnS core–shell quantum dots exhibiting narrow-band and green photoluminescence. ACS Omega 3, 6703 (2018)

    Article  CAS  Google Scholar 

  97. K.H. Hartstein et al., Electron stability and negative-tetron luminescence in free-standing colloidal n-type CdSe/CdS quantum dots. ACS Nano 11, 10430 (2017)

    Article  CAS  Google Scholar 

  98. S. Jamet, H. Boukari, L. Besombes, Spin dynamics of a Mn atom in a semiconductor quantum dot under resonant optical excitation. Phys. Rev. B 87, 245306 (2013)

    Article  Google Scholar 

  99. A.H. Trojnar et al., Theory of optical properties of II-VI semiconductor quantum dots containing a single magnetic ion in a strong magnetic field. Phys. Rev. B 85, 165415 (2012)

    Article  Google Scholar 

  100. M. Patel et al., Optical and photoelectrochemical properties of transparent NiO quantum dots. Mater. Lett. 218, 123 (2018)

    Article  CAS  Google Scholar 

  101. A.S. Perepelitsa et al., Thermostimulated luminescence of colloidal Ag2S quantum dots. J. Lumin. 198, 357 (2018)

    Article  CAS  Google Scholar 

  102. R. Chen et al., Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas. Nanotech. 19, 455604 (2008)

    Article  Google Scholar 

  103. S. Lin et al., Theoretical and experimental investigation of the electronic structure and quantum confinement of wet-chemistry synthesized Ag2S nanocrystals. J. Phys. Chem. C 119, 867 (2015)

    Article  CAS  Google Scholar 

  104. HanfengYin et al., Review on lattice structures for energy absorption properties. Compos. Struct. 304, 116397 (2023)

    Article  Google Scholar 

  105. V. Venkatachalam, S. Ganapathy, I. Perumal, M. Anandhan, Crystal shape and size of CdTe colloidal quantum dots controlled by silver doping for enhanced quantum dots sensitized solar cells performance. Colloids Surf., A 656, 130296 (2023)

    Article  CAS  Google Scholar 

  106. R. Sangeetha, A. Peter, J. Lee, W. Lee, Strain induced optical properties of exciton in a CdTe/ZnTe quantum dot. Superlat. Microstruc. 66, 54 (2014)

    Article  CAS  Google Scholar 

  107. S. Mura et al., Integrating sol-gel and carbon dots chemistry for the fabrication of fluorescent hybrid organic-inorganic films. Scient. Rep. 10, 4770 (2020)

    Article  CAS  Google Scholar 

  108. S. Shanmug et al., Structural and optical properties of salicyl-N-methyl-4-stilbazolium tosylate: thermal DFT, MEP and Hirshfeld surface analysis. J. Mol. Struct. 1271, 134072 (2023)

    Article  Google Scholar 

  109. Y. Al-Douri, K.D. Verma, D. Prakash, Optical investigations of blue shift in ZnS quantum dots. Superlat. Microstruc. 88, 662 (2015)

    Article  CAS  Google Scholar 

  110. Y. Al-Douri et al., Zinc effect on quantum dots potential of PbI2 nanostructures. J. Nanoelec. Optoelec. 10, 705 (2015)

    Article  CAS  Google Scholar 

  111. C.E. Martinez-Nuñez et al., Radial breathing modes in silver selenide quantum dots. Mater. Lett. 167, 135 (2016)

    Article  Google Scholar 

  112. J.-R. Tu et al., Facile fabrication of SnS2 quantum dots for photoreduction of aqueous Cr(VI). Mater. Lett. 185, 303 (2016)

    Article  CAS  Google Scholar 

  113. P. Kumar et al., Nanotwinning in CdS quantum dots. Physica B 407, 3347 (2017)

    Article  Google Scholar 

  114. K. Gong et al., Resonance Raman excitation profiles of CdS in pure CdS and CdSe/CdS core–shell quantum dots: CdS-localized excitons. J. Chem. Phys. 147, 224702 (2017)

    Article  Google Scholar 

  115. Y. Al-Douri et al., Further optical properties of CdX (X=S, Te) compounds under quantum dot diameter effect: Ab initio method. Renew. Ener. 45, 232 (2012)

    Article  CAS  Google Scholar 

  116. Y. Al-Douri et al., Ab initio method of optical investigations of CdS1-xTex alloys under quantum dots diameter effect. Sol. Ener. 115, 33 (2015)

    Article  CAS  Google Scholar 

  117. Y. Al-Douri, H. Khachai, R. Khenata, Chalcogenides-based quantum dots: Optical investigation using first-principles calculations. Mater. Sci. Semicon. Proces. 39, 276 (2015)

    Article  CAS  Google Scholar 

  118. Y. Al-Douri, H. Khachai, R. Khenata, A. Bouhemadou, First-principles calculations for optical investigations of PbX (X = S, Te) compounds under quantum dots diameter effect. Can. J. Phys. 93, 1490 (2015)

    Article  CAS  Google Scholar 

  119. Z. Ning et al., Air-stable N-type colloidal quantum dot solids. Nat. Mater. 13, 822 (2014)

    Article  CAS  Google Scholar 

  120. Q. Lin et al., Phase-transfer ligand exchange of lead chalcogenide quantum dots for direct deposition of thick, highly conductive films. J. Am. Chem. Soc. 139, 6644 (2017)

    Article  CAS  Google Scholar 

  121. C.-H.M. Chuang et al., Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat Mater. 13, 796 (2014)

    Article  CAS  Google Scholar 

  122. M. Graetzel et al., Materials interface engineering for solution-processed photovoltaics. Nat. 488, 304 (2012)

    Article  CAS  Google Scholar 

  123. D.V. Pandi, N. Muthukumarasamy, S. Agilan, D. Velauthapillai, CdSe quantum dots sensitized ZnO nanorods for solar cell application. Mater. Lett. 223, 227 (2018)

    Article  Google Scholar 

  124. E. Pınar et al., High-performance PbS/CdS quantum dot Co-sensitized hierarchical ZnO nanowall photoanodes decorated on electrochemically reduced graphene. Electrochim. Acta 438, 141584 (2023)

    Article  Google Scholar 

  125. X. Qiu et al., The influence of annealing temperature on the interface and photovoltaic properties of CdS/CdSe quantum dots sensitized ZnO nanorods solar cells. J. Colloid Interface Sci. 430, 200 (2014)

    Article  CAS  Google Scholar 

  126. C. Zhou et al., One-pot synthesis of CdSe@CdS core@shell quantum dots and their photovoltaics application in quantum-dot-sensitized ZnO nanorods. J. Photochem. Photobiol. A: Chem. 332, 251 (2017)

    Article  CAS  Google Scholar 

  127. F. Ghoreishi et al., Improved performance of CdS/CdSe quantum dots sensitized solar cell by incorporation of ZnO nanoparticles/reduced graphene oxide nanocomposite as photoelectrode. J. Power Sour. 271, 195 (2014)

    Article  CAS  Google Scholar 

  128. I. Sisman et al., Role of ZnO photoanode nanostructures and sensitizer deposition approaches on the photovoltaic properties of CdS/CdSe and CdS1−xSex quantum dot-sensitized solar cells. J. Power Sour. 340, 192 (2017)

    Article  CAS  Google Scholar 

  129. D. Punnose et al., Structure and thermoelectric properties of bismuth telluride—Carbon composites. Mater. Res. Bull. 102, 10 (2018)

    Google Scholar 

  130. Z. Peng et al., Improving on the interparticle connection for performance enhancement of flexible quantum dot sensitized solar cells. Mater. Res. Bull. 105, 91 (2018)

    Article  CAS  Google Scholar 

  131. A.D. Padghan et al., 1,6,7-Trisubstituted perylene bisimides with tunable optical properties for colorimetric and “turn-on” fluorescence detection of HCl. Dyes Pigm. 202, 110303 (2022)

    Article  CAS  Google Scholar 

  132. P. Wang et al., Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells. Adv. Mater. 16, 1806 (2010)

    Article  Google Scholar 

  133. K.K. Ahmed et al., Transferring the wide band gap chitosan: POZ-based polymer blends to small optical energy band gap polymer composites through the inclusion of green synthesized Zn2+-PPL metal complex. Arab. J. Chem. 15, 103913 (2022)

    Article  CAS  Google Scholar 

  134. J. Xue et al., Recent progress in synthetic methods and applications in solar cells of Ag2S quantum dots. Mater. Res. Bull. 106, 113 (2018)

    Article  CAS  Google Scholar 

  135. M.P. Abdul Muthalif et al., H3PO4 treated surface modified CuS counter electrodes with high electrocatalytic activity for enhancing photovoltaic performance of quantum dot-sensitized solar cells. Appl. Surf. Sci. 440, 1022 (2018)

    Article  Google Scholar 

  136. N. Singh et al., ZnSe quantum dots sensitized electrospun ZnO nanofibers as an efficient photoanode for improved performance of QDSSC. Mater. Sci. Semicond. Proces. 64, 16 (2017)

    Article  CAS  Google Scholar 

  137. T.K. Das et al., Template assisted nanoporous TiO2 nanoparticles: The effect of oxygen vacancy defects on photovoltaic performance of DSSC and QDSSC. Sol. Ener. 159, 920 (2018)

    Article  CAS  Google Scholar 

  138. C. Vivian et al., Wide gap p-type NiO-Ga2O3 alloy via electronic band engineering. J. Alloy. Compd. 932, 167275 (2023)

    Article  Google Scholar 

  139. G. Niu et al., Combined post-modification of iodide ligands and wide band gap ZnS in quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 16, 18327 (2014)

    Article  CAS  Google Scholar 

  140. S.B. Bubenhofer et al., Large-scale synthesis of PbS–TiO2 heterojunction nanoparticles in a single step for solar cell application. J. Phys. Chem. C 116, 16264 (2012)

    Article  CAS  Google Scholar 

  141. J. Sun et al., Generation of multiple excitons in Ag2S quantum dots: Single high-energy versus multiple-photon excitation. J. Phys. Chem. Lett. 5, 659 (2014)

    Article  CAS  Google Scholar 

  142. F. Meinardi et al., Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nat. Nanotech. 10, 878 (2015)

    Article  CAS  Google Scholar 

  143. C. Chen et al., Fabrication of silver sulfide thin films for efficient organic solar cells with high short-circuit currents based on double heterojunctions. J. Pow. Sour. 298, 259 (2015)

    Article  CAS  Google Scholar 

  144. S. Banerjee et al., N-acetyle cysteine assisted synthesis of core-shell Ag2S with enhanced light transmission and diminished reflectance: Surface modifier for c-SiNx solar cells. J. Ind. Eng. Chem. 40, 54 (2016)

    Article  CAS  Google Scholar 

  145. S. Kumar et al., Fabrication of TiO2/CdS/Ag2S nano-heterostructured photoanode for enhancing photoelectrochemical and photocatalytic activity under visible light. Chem. Sel. 1, 4891 (2016)

    CAS  Google Scholar 

  146. R.K. Chava, M. Kang, Ag2S quantum dot sensitized zinc oxide photoanodes for environment friendly photovoltaic devices. Mater. Lett. 199, 188 (2017)

    Article  CAS  Google Scholar 

  147. A.M. Holi et al., Enhanced photoelectrochemical performance of ZnO nanorod arrays decorated with CdS shell and Ag2S quantum dots. Superlatt. Microstruc. 103, 295 (2017)

    Article  CAS  Google Scholar 

  148. S. Chand et al., Recent developments on the synthesis, structural and optical properties of chalcogenide quantum dots. Sol. Energy Mater. Sol. Cells 168, 183 (2017)

    Article  CAS  Google Scholar 

  149. M. Singh et al., Unravelling the effect of donor-π-acceptor architecture in designing 1,3-indanedione based sensitizers for DSSC applications. J. Photochem. Photobiol., A 435, 114328 (2023)

    Article  CAS  Google Scholar 

  150. Z. Liu et al., High-efficiency hybrid solar cells based on polymer/PbSxSe1-x nanocrystals benefiting from vertical phase segregation. Adv. Mater. 25, 5772 (2013)

    Article  CAS  Google Scholar 

  151. O.E. Semonin et al., Quantum dots for next-generation photovoltaics. Mater. Today 15, 508 (2012)

    Article  CAS  Google Scholar 

  152. J. Albero, J.N. Clifford, E. Palomares, Quantum dot based molecular solar cells. Coord. Chem. Rev. 263–264, 53 (2014)

    Article  Google Scholar 

  153. li Liqi et al., In-situ monitored chemical bath deposition of planar NiOx layer for inverted perovskite solar cell with enhanced efficiency. J. Mater. Sci. Technol. 133, 53 (2022)

    Google Scholar 

  154. A. Ayub et al., Cadmium sulphide/cadmium selenide quantum dot solar cells with inexpensive electrodeposited silver/polyaniline composite counter-electrode. J. Renew. Sustaina. Ener. 9, 063703 (2017)

    Article  Google Scholar 

  155. J.-H. Wang et al., Long-lived single excitons, trions, and biexcitons in CdSe/CdTe Type-II colloidal quantum wells. Chin. J. Chem. Phys. 30, 649 (2017)

    Article  CAS  Google Scholar 

  156. S.J. Prado et al., Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots. J. Phys.: Condens. Matter 29, 445301 (2017)

    Google Scholar 

  157. U. Poudyal et al., Carrier transport dynamics in Mn-doped CdSe quantum dot sensitized solar cells. Nanotech. 28, 415401 (2017)

    Article  Google Scholar 

  158. M. Karimipour et al., Excellent growth of ZnS shell on Ag2S QDs using a photochemical-microwave irradiation approach and fabrication of their indoor QD thin film solar cells. Mater. Techn. Adv. Perfor. Mater. 33, 784 (2018)

    CAS  Google Scholar 

  159. J. Dana et al., Concurrent ultrafast electron- and hole-transfer dynamics in CsPbBr 3Perovskite and quantum dots. ACS Omega 3, 2706 (2018)

    Article  CAS  Google Scholar 

  160. J. Jie et al., One-dimensional II-VI nanostructures: synthesis, properties and optoelectronic applications. Nano Today 5, 313 (2010)

    Article  CAS  Google Scholar 

  161. C.J. Barrelet et al., Nanowire photonic circuit elements. Nano Lett. 4, 1981 (2004)

    Article  CAS  Google Scholar 

  162. X.F. Duan et al., Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nat. 409, 66 (2001)

    Article  CAS  Google Scholar 

  163. K.F. Mak, J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photo. 10, 216 (2016)

    Article  CAS  Google Scholar 

  164. K.V. Vokhmintcev et al., Charge transfer and separation in photoexcited quantum dot-based systems. Nano Today 11, 189 (2016)

    Article  CAS  Google Scholar 

  165. M. Kolarczik et al., Sideband pump-probe technique resolves nonlinear modulation response of PbS/CdS quantum dots on a silicon nitride waveguide. APL Photo. 3, 016101 (2018)

    Article  Google Scholar 

  166. S.-Y. Joo et al., Room-temperature processing of CdSe quantum dots with tunable sizes. J. Appl. Phys. 121, 223102 (2017)

    Article  Google Scholar 

  167. A. De Iacovo et al., Noise performance of PbS colloidal quantum dot photodetectors. Appl. Phys. Lett. 111, 211104 (2017)

    Article  Google Scholar 

  168. E. Moyen et al., Ligand removal and photo-activation of CsPbBr3 quantum dots for enhanced optoelectronic devices. Nanoscale 10, 8591 (2018)

    Article  CAS  Google Scholar 

  169. J.-K. Qin et al., Photoresponse enhancement in monolayer ReS2 phototransistor decorated with CdSe–CdS–ZnS quantum dots. ACS Appl. Mater. Interf. 9, 39456 (2017)

    Article  CAS  Google Scholar 

  170. Z. Zhang, X. Zhang, H. Liu, H. Bao, F. Zhang, S. Wang, X. Li, Building one-dimensional hole transport channels in cross-linked polymers to enable efficient deep blue QLED. Chem. Eng. J. 451, 138516 (2023)

    Article  CAS  Google Scholar 

  171. N. NaikMude, H.I. Yang, T.T. Thuy, J.H. Kwon, Performance enhancement by sol-gel processed Ni-doped ZnO layer in InP-based quantum dot light-emitting diodes. Org. Electron. 112, 106696 (2023)

    Article  Google Scholar 

  172. M. Albaladejo-Siguan, E.C. Baird, D. Becker-Koch, Y. Li, A.L. Rogach, Y. Vaynzof, Stability of quantum dot solar cells: a matter of (Life)time. Adv. Energy Mater. 11, 2003457 (2021)

    Article  CAS  Google Scholar 

  173. W.I.L. Lawrie et al., Quantum dot arrays in silicon and germanium. Appl. Phys. Lett. 116, 080501 (2020)

    Article  CAS  Google Scholar 

  174. S. Miao et al., Hetero-atom-doped carbon dots: doping strategies, properties and applications. Nano Today 33, 100879 (2020)

    Article  CAS  Google Scholar 

  175. C. Yang et al., A semiconducting layered metal-organic framework magnet. Nat. Commun. 10, 3260 (2019)

    Article  Google Scholar 

  176. C. Sealy, Stable quantum dots promise better solar cells. Nano Today 9, 396 (2014)

    Article  Google Scholar 

  177. A.M. El Nahrawy et al., Influence of NiO on structural, optical, and magnetic properties of Al2O3–P2O5–Na2O magnetic porous nanocomposites nucleated by SiO2. Solid State Sci. 108, 106454 (2020)

    Article  Google Scholar 

  178. R.S. Ibrahim et al., Synthesis and structural, optical, and magnetic properties of Mn-doped CdS quantum dots prepared by chemical precipitation method. J. Mater. Sci.: Mater. Electron. 32, 19980 (2021)

    CAS  Google Scholar 

  179. A.M. ElNahrawy et al., Impact of Mn-substitution on structural, optical, and magnetic properties evolution of sodium–cobalt ferrite for opto-magnetic applications. J. Mater. Sci.: Mater. Electron. 31, 6224 (2020)

    CAS  Google Scholar 

  180. A.M. Mansour et al., Structural, optical, electrical and photoelectrical properties of 2-amino-4-(5-bromothiophen-2-yl)-5,6-dihydro-6-methyl-5-oxo-4H-pyrano[3,2-c] quinoline-3-carbonitrile Films. J. Electron. Mater. 46, 6957 (2017)

    Article  CAS  Google Scholar 

  181. A.-F. Mohammed Mansour et al., Structure, morphology, optical and magnetic studies of Fe3O4-doped CdS nanocomposite. J. Mater. Sci.: Mater. Electron. 33, 1 (2020)

    Google Scholar 

  182. A.B. Abou Hammad et al., Ni2+doping effect on potassium barium titanate nanoparticles: enhancement optical and dielectric properties. Phys. Scr. 96, 125821 (2021)

    Article  Google Scholar 

  183. A.M. Mansour et al., Structural, optical and galvanomagnetical properties of low cost synthesised nanostructure Cu2S films. Int. J. Microstruct. Mater. Prop. 14, 272 (2019)

    CAS  Google Scholar 

  184. A.M. El Nahrawy et al., Amany M El Nahrawy et al. Structural investigation and optical properties of Fe, Al, Si, and Cu–ZnTiO3 nanocrystals. Phys. Scr. 96, 11580 (2021)

    Article  Google Scholar 

  185. A.M. El Nahrawy et al., Compositional effects and optical properties of P2O5 doped magnesium silicate mesoporous thin films. Arab. J. Sci. Eng. 46, 5893 (2021)

    Article  Google Scholar 

  186. N.A. Elkanzi et al., Design, fabrication and optical characterizations of pyrimidine fused quinolone carboxylate moiety for photodiode applications. Optik 216, 164882 (2020)

    Article  CAS  Google Scholar 

  187. G.V. Kanmani et al., A new Eu3+-activated milarite-type potassium magnesium zinc silicate red-emitting phosphor for forensic applications. J. Mater. Sci.: Mater. Electron. 34, 765 (2023)

    CAS  Google Scholar 

  188. R. Kumar et al., Structural, optical, electrochemical, and antibacterial features of ZnS nanoparticles: incorporation of Sn. Appl. Phys. A 125, 543 (2019)

    Article  CAS  Google Scholar 

  189. P. Sakthivel, S. Muthukumaran, Structural, photoluminescence and magnetic properties of Mn, Cr dual-doped ZnS quantum dots: Influence of Cr concentration. J. Phys. Chem. Solids 120, 183 (2018)

    Article  CAS  Google Scholar 

  190. P. Sakthivel, S. Muthukumaran, Influence of Co2+ on electrical and optical behavior of Mn2+-doped ZnS quantum dots. Opt. Laser Technol. 103, 109 (2018)

    Article  CAS  Google Scholar 

  191. K. Kavi Rasu et al., Effect of Pd2+ co-doping on the structural and optical properties of Mn2+:ZnS nanoparticles, Optics & Laser Technology. Optics & Laser Technol. 130, 106365 (2020)

    Article  CAS  Google Scholar 

  192. P. Sakthivel et al., Influence of Ag+ and Mn2+ ions on structural, optical and photoluminescence features of ZnS quantum dots. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 241, 118666 (2020)

    Article  CAS  Google Scholar 

  193. P. Sakthivel, S. Muthukumaran, Crystallographic, structural and band gap tailoring of Zn0.98Mn0.02S quantum dots co-doped with Cu by co-precipitation method. J. Inorg. Organomet. Polym. Mater. 26, 563 (2016)

    Article  CAS  Google Scholar 

  194. M.Y. Lu et al., Intercrossed sheet-like Ga-doped ZnS nanostructures with superb photocatalytic actvitiy and photoresponse. J. Phys. Chem. C 113, 12878 (2009)

    Article  CAS  Google Scholar 

  195. G.D. Yuan et al., p-type conduction in nitrogen-doped ZnS nanoribbons". Appl. Phys. Lett. 93, 213102 (2008)

    Article  Google Scholar 

  196. T. Kang et al., Synthesis and magnetic properties of single-crystalline Mn/Fe-doped and Co-doped ZnS nanowires and nanobelts. J. Phys. Chem. C 113, 5352 (2009)

    Article  CAS  Google Scholar 

  197. H.S. Song et al., p-type conduction in arsenic-doped ZnSe nanowires. Appl. Phys. Lett. 95, 033117 (2009)

    Article  Google Scholar 

  198. X.T. Zhang et al., Photoluminescence of Ag-doped ZnSe nanowires synthesized by metalorganic chemical vapor deposition. Appl. Phys. Lett. 86, 203114 (2005)

    Article  Google Scholar 

  199. B.J. Xi et al., Preparation and characterization of cubic and hexagonal polytypes of ZnSe:Cu2+ one-dimensional nanostructures. J. Phys. Chem. C 112, 5333 (2008)

    Article  CAS  Google Scholar 

  200. P.T.K. Chin et al., Highly luminescent ultranarrow Mn doped ZnSe nanowires. Nano Lett. 9, 745 (2008)

    Article  Google Scholar 

  201. R.M. Ma et al., Synthesis of high quality nn-type CdS nanobelts and their applications in nanodevices. Appl. Phys. Lett. 89, 203120 (2006)

    Article  Google Scholar 

  202. D.S. Kim et al., Extension of the self-consistent-charge density-functional tight-binding method: third-order expansion of the density functional theory total energy and introduction of a modified effective coulomb interaction. J. Phys. Chem. C 111, 10861 (2007)

    Article  CAS  Google Scholar 

  203. Z.B. He et al., Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping. Small 5, 345 (2009)

    Article  CAS  Google Scholar 

  204. J.H. Yu et al., Giant Zeeman splitting in nucleation-controlled doped CdSe:Mn2+ quantum nanoribbons. Nat. Mater. 9, 47 (2010)

    Article  CAS  Google Scholar 

  205. H.B. Huo et al., Electrical properties of Cu doped p-ZnTe nanowires. Nanotechnology 17, 5912 (2006)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

YA wrote, edited, and worked the original draft and copyrighted the figures and tables. MMK wrote, organized, validated, and edited the manuscript. JRJ edited and worked on the manuscript.

Corresponding author

Correspondence to Y. Al-Douri.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Douri, Y., Khan, M.M. & Jennings, J.R. Synthesis and optical properties of II–VI semiconductor quantum dots: a review. J Mater Sci: Mater Electron 34, 993 (2023). https://doi.org/10.1007/s10854-023-10435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10435-5

Navigation