Skip to main content
Log in

Structural, optical, electrochemical, and antibacterial features of ZnS nanoparticles: incorporation of Sn

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Incorporation of Sn into ZnS nanoparticles was performed by simple co-precipitation method and was analyzed for various parameters by X-ray diffraction (XRD), Transmission electron microscope (TEM), energy dispersive X-rays (EDX), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV–visible spectroscopy, photoluminescence (PL) spectra, and electrochemical and antimicrobial studies. XRD results showed that there was no structural, geometrical alteration in Sn: ZnS and they remained in their cubic structure. Crystallite size was calculated using Debye–Scherrer method and it was ranged from 2 to 3 nm. UV–visible absorption intensity was increased for the increase of Sn concentration. Band-gap values were red shifted from that of the bulk ZnS value. The observed PL emission at 360 nm was due to transition of electrons from the shallow states near the conduction band to the sulfur vacancies present near the valence band in the ZnS lattice. Electrochemical analysis proved that the Sn = 4% composition showed a better electrical response. Since this composition of Sn had good electrical conductivity, the material can be useful to energy material applications. Antibacterial activity of Sn: ZnS nanoparticles was also discussed. A better antibacterial behavior was exhibited by 6% Sn-incorporated sample and this composition may be useful for biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.J. Murphy, Anal. Chem. 74, 520A (2002)

    Google Scholar 

  2. J. Jie, W. Zhang, I. Bello, C.Z. Lee, S.T. Lee, Nano Today. 5, 313 (2010)

    Google Scholar 

  3. V. Ramasamy, K. Praba, G. Murugadoss, Spectrochim. Acta. A 96, 963 (2012)

    ADS  Google Scholar 

  4. S. Ummartyotin, N. Bunnnak, J. Juntaro, M. Sain, H. Mauspiya, Solid State Sci. 14, 299 (2012)

    ADS  Google Scholar 

  5. S. Horoz, Q. Dai, F.S. Maloney, B. Yakami, J.M. Pikal, X. Zhang, J. Wang, W. Wang, J. Tang, Phys. Rev. App. 3, 024011 (2015)

    Google Scholar 

  6. H. Labiadh, K. Lahbib, S. Hidouri, S. Touil, T.B. Chaabane, Asian Pac. J. Trop. Med. 9, 757 (2016)

    Google Scholar 

  7. T. Krishnakumar, N. Pinna, K. PrasannaKumari, K. Perumal, R. Jayaprakash, Mater. Lett. 62, 3437 (2008)

    Google Scholar 

  8. M. Peiteado, Y. Iglesias, J.F. Fernandez, J. DeFrutos, A.C. Caballero, Mater. Chem. Phys. 101, 1 (2007)

    Google Scholar 

  9. C.Y. Tsay, H.C. Cheng, Y.T. Tung, W.H. Tuan, C.K. Lin, Thin Solid Films 517, 1032 (2008)

    ADS  Google Scholar 

  10. T. Prakash, R. Jayaprakash, C. Espro, G. Neri, J. Mater. Sci. 49, 1776 (2014)

    ADS  Google Scholar 

  11. P. Mani, K. Manikandan, J. Joseph Prince, J. Mater. Sci. 28, 13602 (2017)

    Google Scholar 

  12. R. Sangeetha, S. Muthukumaran, Ceramics Int. 42, 5921 (2016)

    Google Scholar 

  13. V. Vadhana sharon, S. Muthukumaran, J. Mater. Sci. 29, 14935 (2018)

    Google Scholar 

  14. K. Chaitanya Kumar, N. Madhusudhana Rao, S. Kaleemulla, G. Venugopal Rao, Phys. B. 522, 75 (2017)

    Google Scholar 

  15. J.H. Wang, Y.-C. Liu, S.S.-J. Lee, M.-Y. Yen, Y.-S. Chen, J.-H. Wang, S.-R. Wann, H.-H. Lin, Clin. Infect. Dis. 26, 1434 (1998)

    Google Scholar 

  16. E.B. Hirsch, V.H. Tam, J. Antimicrob. Chemother. 65, 1119 (2010)

    Google Scholar 

  17. E. Helgason, O.A. Okstad, D.A. Caugant, H.A. Johansen, A. Fouet, M. Mock, I. Hegna, A.B. Kolsto, Appl. Environ. Microbiol. 66, 2627 (2000)

    Google Scholar 

  18. S.Y.C. Tong, J.S. Davis, E. Eichenberger, T.C. Holland, V.G. Fowler, Clin. Microbiol. Rev. 28, 603 (2015)

    Google Scholar 

  19. E. Gordanian, S. Jalali-Asadabadi, I. Ahmad, S. Rahimia, M. Yazdani-Kachoei, RSC Adv. 5, 23320 (2015)

    Google Scholar 

  20. S.K. Mehta, S. Kumar, S. Chaudhary, K.K. Bhasin, M. Gradzielski, Nanoscale Res. Lett. 4, 17 (2009)

    ADS  Google Scholar 

  21. G.P. Bodey, R. Bolivar, V. Fainstein, L. Jadeja, Rev. Infect Dis. 5, 279 (1983)

    Google Scholar 

  22. J.B. Kaper, J.P. Nataro, H.L. Mobley, Nat. Rev. Microbiol. 2, 123 (2004)

    Google Scholar 

  23. D. Chandran, L.S. Nair, S. Balachandran, K. Rajendra babu, M. Deepa, J Sol-Gel Sci. Technol. 76, 582 (2015)

    Google Scholar 

  24. M. Mall, L. Kumar, J. Lumin. 130, 660 (2010)

    Google Scholar 

  25. S. Ameen, M.S. Akhtar, H.K. Seo, Y.S. Kim, H.S. Shin, Chem. Eng. J. 187, 351 (2012)

    Google Scholar 

  26. J. Duan, X. Huang, H. Wang, Q. Zhong, F. Sun, X. He, Mater. Chem. Phys. 106, 186 (2007)

    Google Scholar 

  27. P. Sakthivel, S. Muthukumaran, J. Phys. Chem. Solids 120, 183 (2018)

    ADS  Google Scholar 

  28. P. Sakthivel, S. Muthukumaran, Opt. Laser Technol. 103, 109 (2018)

    ADS  Google Scholar 

  29. K. Prabhu, S. Kannan, J. Henry, G. Sivakumar, K. Mohanraj, J Sci. Technol. (WJST) 11, 795 (2013)

    Google Scholar 

  30. N. Nripasree, N.K. Deepak, Mater. Sci. Eng. B 211, 121 (2016)

    Google Scholar 

  31. P. Sakthivel, S. Muthukumaran, J. Mater. Sci. 28, 8309 (2017)

    Google Scholar 

  32. R. Veerasubam, S. Muthukumaran, Mater. Res. Express 6, 045006 (2019)

    ADS  Google Scholar 

  33. B.E. Sernelius, K.F. Berggren, Z.C. Jin, I. Hamberg, C.G. Granqvist, Phys. Rev. B 37, 10244 (1988)

    ADS  Google Scholar 

  34. T. Prakash, R. Jayaprakash, C. Espro, G. Neri, J. Mater. Sci. 49, 1776 (2014)

    ADS  Google Scholar 

  35. T. Matsumoto, H. Kato, K. Miyamoto, M. Sano, E.A. Zhukov, T. Yao, Appl. Phys. Lett. 8, 1231 (2002)

    ADS  Google Scholar 

  36. P. Sakthivel, G.K.D. Prasanna Venkatesan, K. Subramaniam, P. Muthukrishnan, J. Mater. Sci. 30, 11984 (2019)

    Google Scholar 

  37. B. Malinowska, M. Rakib, G. Durand, Solar Energy Mater. Solar Cells. 86, 399 (2005)

    Google Scholar 

  38. P. Sakthivel, S. Muthukumaran, J. Inorg. Organomet. Polym. 26, 563 (2016)

    Google Scholar 

  39. C. Ravi Dhas, A. Jennifer Christy, R. Venkatesh, S.K. Panda, B. Subramanian, K. Ravichandran, P. Sudhagar, A. Moses, J. Solid State Electrochem. 22, 2485 (2018)

    Google Scholar 

  40. J. Ma, W. Shen, C. Li, F. Yu, Light reharvesting and enhanced efficiency of dye- sensitized solar cells based 3D-CNT/grapheme counter electrodes. J Mater Chem A. 3, 12307 (2018)

    Google Scholar 

  41. S.K. Swami, N. Chaturvedi, A. Kumar, N. Chander, V. Dutta, D.K. Kumar, A. Ivaturi, S. Senthilarasu, H.M. Upadhyaya, Phys. Chem. Chem. Phys. 16, 23993 (2014)

    Google Scholar 

  42. W. He, H. Jia, J. Cai, X. Han, Z. Zheng, W.G. Wamer, J. Yin, J. Phys. Chem. C 120, 3187 (2016)

    Google Scholar 

  43. V. Vadhana Sharon, S. Muthukumaran, Mater. Res. Express. 5, 6 (2018)

    Google Scholar 

  44. M.Y. Jehad, N.D. Enas, J. Health Sci. 2, 38 (2012)

    Google Scholar 

  45. B.V. Schwartz, T. Frank, R. Sandra, P. Sabine, C. Lars, L. Alexandros, F. Renate, L. Katharina, J. Ulrich Adv. Funct. Mater. 22, 2376 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sakthivel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Sakthivel, P. & Mani, P. Structural, optical, electrochemical, and antibacterial features of ZnS nanoparticles: incorporation of Sn. Appl. Phys. A 125, 543 (2019). https://doi.org/10.1007/s00339-019-2823-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2823-2

Navigation