Skip to main content

Advertisement

Log in

Optical response of Eu3+-activated MgAl2O4 nanophosphors for Red emissive

LED Applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Eu3+-activated magnesium aluminate phosphors were successfully synthesized by nitrate–citrate gel combustion method and thermally treated at 650, 750, 850, and 950oC. The powder X-ray diffraction pattern showed that all MgAl2O4:xEu3+ (0 ≤ x ≤ 0.10) samples exhibit crystallized cubic phase of spinel structure with space group Fd-3 m. The Debye–Scherrer equation is used to estimate average crystallite size values and are found to be 8.5–12.1 nm, that are also confirmed by high-resolution transmission electron microscopy (HRTEM) images. TGA–DTG results suggest that the maximum decomposition of the precursors were observed below 600oC. Accordingly, the decomposition temperature was taken 650oC and above. The functional groups of the powder samples were determined by FTIR. Energy levels were characterized, and the band gap energy (Eg) has been calculated using UV–Vis absorption spectroscopy and found to be in the range of 5.08–5.19 eV. The FESEM images shows that the nanoparticles are agglomerated and are in nonuniform spherical shape with reduced average particle size from 27 ± 4.1 to 24.1 ± 3.3 nm. Further, the elemental composition of the as-prepared samples was analyzed by using energy-dispersive X-ray spectra (EDAX). The photoluminescent property of MgAl2O4:xEu3+ samples was investigated using room-temperature emission spectroscopy. These phosphors show different emissions of Eu3+ corresponding to 5D07FJ=1,2,3,4 transitions which lie in the wavelength range from 590 to 703 nm. The red emission transition 5D07F2 (∆J = 2) centered at 612 nm has been known to be hypersensitive, strong, and more intense of all samples. The PL emission intensity increases up to 4 mol% Eu3+ concentration and then decreases due to the process of concentration quenching. The chromaticity color coordinates were obtained from the luminescence emission spectrum. The temperature-dependent luminescence property of MgAl2O4:4%Eu3+ phosphor has also been discussed. These results showed that MgAl2O4:xEu3+ could be a prominent material for the production of artificial red light in red LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The authors are ready to provide any research data, which have been mentioned in the manuscript on request.

References

  1. R.C. Ropp, Luminescence and the Solid State, 2nd edn. (Elsevier, Amsterdam, 2004)

    Google Scholar 

  2. D. Levy, A. Pavese, M. Hanfland, Am. Mineral 88, 93 (2003)

    Article  CAS  Google Scholar 

  3. B.P. Uberuaga, D. Bacorisen, R. Smith, J.A. Ball, R.W. Grimes, A.F. Voter, K.E. Sickafus, Phys. Rev. B 75, 104116 (2007)

    Article  Google Scholar 

  4. S.K. Mohan, R. Sarkar, Mater. Design 110, 145 (2016)

    Article  CAS  Google Scholar 

  5. F.Y. Cui, A. Kundu, A. Krause, M.P. Harmer, R.P. Vinci, Acta Mater 148, 320 (2018)

    Article  CAS  Google Scholar 

  6. N. Habibi, Y. Wang, H. Arandiyan, M. Rezaei, Adv. Powder Technol. 28, 1249 (2017)

    Article  CAS  Google Scholar 

  7. R. Nakhowong, S. Kiennork, P. Wongwanwattana, T. Seetawan, R. Chueachot, Mater. Lett. 220, 234 (2018)

    Article  CAS  Google Scholar 

  8. S. Sinhamahapatra, M. Shamim, H.S. Tripathi, A. Ghosh, K. Dana, Ceram. Int. 42, 9204 (2016)

    Article  CAS  Google Scholar 

  9. O. Shpotyuk, A. Ingram, H. Klym, M. Vakiv, I. Hadzaman, J. Filipecki, J. Eur. Ceram. Soc. 25, 2981 (2005)

    Article  CAS  Google Scholar 

  10. J. Jeon, Y. Kang, J.H. Park, Y. Chung, Ceram. Int. 43, 15074 (2017)

    Article  CAS  Google Scholar 

  11. F. Li, Y. Zhao, Y. Liu, Y. Hao, R. Liu, D. Zhao, Chem. Eng. J. 173, 750 (2011)

    Article  CAS  Google Scholar 

  12. G. Gusmano, G. Montesperelli, E. Traversa, G. Mattogno, J Am. Ceramic Soc. 76, 743 (1993)

    Article  CAS  Google Scholar 

  13. C. Dlamini, M.R. Mhlongo, L.F. Koao, T.E. Motaung, T.T. Hlatshwayo, S.V. Motloung, Appl. Phys. A 126, 75 (2020)

    Article  CAS  Google Scholar 

  14. T. Sato, M. Shirai, K. Tanaka, Y. Kawabe, E. Hanamura, J. Lumin 114, 155 (2005)

    Article  CAS  Google Scholar 

  15. P.J. Dereń, K. Maleszka-Bagińska, P. Głuchowski, M.A. Małecka, J. Alloys Compd. 525, 39 (2012)

    Article  Google Scholar 

  16. I. Omkaram, S. Buddhudu, Opt. Mater. 32, 8 (2009)

    Article  CAS  Google Scholar 

  17. Q. Sai, C. Xia, H. Rao, X. Xu, G. Zhou, P. Xu, J. Lumin. 131, 2359 (2011)

    Article  CAS  Google Scholar 

  18. V. Singh, V. Kumar Rai, S. Watanabe, T.K. Gundu Rao, L. Badie, I. Ledoux-Rak, Y.-D. Jho, Appl. Phys. B 108, 437 (2012)

    Article  CAS  Google Scholar 

  19. A. Jouini, H. Sato, A. Yoshikawa, T. Fukuda, G. Boulon, K. Kato, E. Hanamura, J. Cryst. Growth 287, 313 (2006)

    Article  CAS  Google Scholar 

  20. V. Singh, G. Sivaramaiah, J.L. Rao, S.H. Kim, J. Lumin. 143, 162 (2013)

    Article  CAS  Google Scholar 

  21. J. Qiao, Z. Xia, J. Appl. Phys. 129, 200903 (2021)

    Article  CAS  Google Scholar 

  22. I. Omkaram, G. Seeta Rama, Raju, S. Buddhudu, J. Phys. Chem. Solids 69, 2066 (2008)

    Article  CAS  Google Scholar 

  23. A.S. Maia, R. Stefani, C.A. Kodaira, M.C.F.C. Felinto, E.E.S. Teotonio, H.F. Brito, Opt. Mater. 31, 440 (2008)

    Article  CAS  Google Scholar 

  24. W. Nantharak, W. Wattanathana, W. Klysubun, T. Rimpongpisarn, C. Veranitisagul, N. Koonsaeng, A. Laobuthee, J. Alloys Compd. 701, 1019 (2017)

    Article  CAS  Google Scholar 

  25. I. Omkaram, B. Vengala Rao, S. Buddhudu, J. Alloys Compd. 474, 565 (2009)

    Article  CAS  Google Scholar 

  26. R. Djenadic, M. Botros, H. Hahn, Solid State Ionics 287, 71 (2016)

    Article  CAS  Google Scholar 

  27. V. Maphiri, B. Dejene, T. Motaung, T. Hlatshwayo, O. Ndwandwe, S. Motloung, Nanomater Nanotechnol 8, 184798041880064 (2018)

    Article  Google Scholar 

  28. T. Yamanaka, Y. Takéuchi, Z. Für Kristallographie - Crystalline Mater. 165, 65 (1983)

    CAS  Google Scholar 

  29. U.D. Wdowik, K. Parliński, A. Siegel, J. Phys. Chem. Solids 67, 1477 (2006)

    Article  CAS  Google Scholar 

  30. G.B. Andreozzi, F. Princivalle, H. Skogby, A. Della Giusta, Am. Min. 85, 1164 (2000)

    Article  CAS  Google Scholar 

  31. S. Sanjabi, A. Obeydavi, J. Alloys Compd. 645, 535 (2015)

    Article  CAS  Google Scholar 

  32. S.K. Behera, P. Barpanda, S.K. Pratihar, S. Bhattacharyya, Mater. Lett. 58, 1451 (2004)

    Article  CAS  Google Scholar 

  33. S. Tripathy, D.S. Saini, D. Bhattacharya, J. Asian. Ceam. Soc. 4, 149 (2016)

    Article  Google Scholar 

  34. M.F. Zawrah, H. Hamaad, S. Meky, Ceram. Int. 33, 969 (2007)

    Article  CAS  Google Scholar 

  35. C. Pratapkumar, S.C. Prashantha, H. Nagabhushana, D.M. Jnaneshwara, J. Science: Adv. Mater. Devices 3, 464 (2018)

    Google Scholar 

  36. C. Luan, D. Yuan, X. Duan, H. Sun, G. Zhang, S. Guo, Z. Sun, D. Pan, X. Shi, Z. Li, J. Sol-Gel Sci. Technol. 38, 245 (2006)

    Article  CAS  Google Scholar 

  37. A.K. Adak, S.K. Saha, P. Pramanik, J. Mater. Sci. Lett. 16, 234 (1997)

    Article  CAS  Google Scholar 

  38. Y.-J. Lin, C.-J. Wu, Surf. Coat. Technol. 88, 239 (1997)

    Article  Google Scholar 

  39. S.V. Motloung, B.F. Dejene, R.E. Kroon, O.M. Ntwaeaborwa, H.C. Swart, T.E. Motaung, Optik 131, 705 (2017)

    Article  CAS  Google Scholar 

  40. P. Du, J.S. Yu, Sci. Rep. 7, 11953 (2017)

    Article  Google Scholar 

  41. A. Ali, I.H. Gul, M.Z. Khan, F. Javaid, J. Korean Ceram. Soc. (2022)

  42. M. Dongol, M.M. El-Nahass, A. El-Denglawey, A.F. Elhady, A.A. Abuelwafa, Curr. Appl. Phys. 12, 1178 (2012)

    Article  Google Scholar 

  43. A. Mazhar, A.H. Khoja, A.K. Azad, F. Mushtaq, S.R. Naqvi, S. Shakir, M. Hassan, R. Liaquat, M. Anwar, Energies 14, 3347 (2021)

    Article  CAS  Google Scholar 

  44. P. Pathak, R. Kurchania, Phys. B: Condens. Matter. 545, 119 (2018)

    Article  CAS  Google Scholar 

  45. S. Gul, M.A. Yousuf, A. Anwar, M.F. Warsi, P.O. Agboola, I. Shakir, M. Shahid, Ceram. Int. 46, 14195 (2020)

    Article  CAS  Google Scholar 

  46. B.V. Naveen Kumar, K. Venkata Rao, E. Basha Shaik, Y. Nirmal Rajeev, K. Ramachandra Rao, S. Cole, Luminescence 37, 1942 (2022)

    Article  CAS  Google Scholar 

  47. M.G. Brik, J. Papan, D.J. Jovanović, M.D. Dramićanin, J. Lumin. 177, 145 (2016)

    Article  CAS  Google Scholar 

  48. I.V. Beketov, A.I. Medvedev, O.M. Samatov, A.V. Spirina, K.I. Shabanova, J. Alloys Compd. 586, S472 (2014)

    Article  CAS  Google Scholar 

  49. C. Wenisch, H.-D. Kurland, J. Grabow, F.A. Müller, J. Am. Ceram. Soc. 99, 2561 (2016)

    Article  CAS  Google Scholar 

  50. S. Saha, S. Das, U.K. Ghorai, N. Mazumder, B.K. Gupta, K.K. Chattopadhyay, Dalton Trans. 42, 12965 (2013)

    Article  CAS  Google Scholar 

  51. J. Wu, J. Wang, J. Lin, Y. Xiao, G. Yue, M. Huang, Z. Lan, Y. Huang, L. Fan, S. Yin, T. Sato, Sci. Rep. 3, 2058 (2013)

    Article  Google Scholar 

  52. W. Ran, H.M. Noh, S.H. Park, B.K. Moon, J.H. Jeong, J.H. Kim, J. Shi, Sci. Rep. 8, 5936 (2018)

    Article  Google Scholar 

  53. S.V. Motloung, B.F. Dejene, O.M. Ntwaeaborwa, H.C. Swart, R.E. Kroon, Chem. Phys. 487, 75 (2017)

    Article  CAS  Google Scholar 

  54. T. Samuel, Ch.S. Kamal, K. Sujatha, V. Veeraiah, Y. Ramakrishana, K.R. Rao, Optik 127, 10575 (2016)

    Article  CAS  Google Scholar 

  55. C. Pratapkumar, S.C. Prashantha, H. Nagabhushana, M.R. Anilkumar, C.R. Ravikumar, H.P. Nagaswarupa, D.M. Jnaneshwara, J. Alloys Compd. 728, 1124 (2017)

    Article  CAS  Google Scholar 

  56. E.B. Shaik, B.V.N. Kumar, S.K. Chirauri, K.R. Rao, J. Mater. Sci: Mater. Electron. 33, 105 (2022)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the DST-FIST Central Instrumentation Laboratory, Government College Autonomous, Rajahmundry, Andhra Pradesh and SSCU, IISc, Bengaluru for providing lab and instrumentation facilities for the preparation of Luminescent Nanomaterials.

Author information

Authors and Affiliations

Authors

Contributions

RRK: Conceptualization, Methodology, and Supervision; BNR, EBS, and DSLP: Experimentation and Writing—Original draft preparation; PTR: Visualization and data Investigation; KS: Writing—Reviewing and Editing.

Corresponding author

Correspondence to R. K. Ramachandra.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, B.N., Rao, P.T., Basha, S.E. et al. Optical response of Eu3+-activated MgAl2O4 nanophosphors for Red emissive. J Mater Sci: Mater Electron 34, 955 (2023). https://doi.org/10.1007/s10854-023-10341-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10341-w

Navigation