Skip to main content

Advertisement

Log in

Use of CoNi-ZIF (zeolitic imidazolate framework)-derived bimetal-doped nitrogen-rich porous carbon composite transition metal oxides in lithium–sulfur batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lithium–sulfur batteries have drawn widespread attention due to their excellent energy density and theoretical specific capacity. However, the low conductivity and volumetric expansion effect of the cathode material and the shuttle effect during the reaction process hinder the commercialization of batteries. Porous carbon materials with rich pore structure and heteroatom doping can effectively improve the above defects. Therefore, the bimetallic-doped nitrogen-rich porous carbon composite transition metal CeO2 was selected as the cathode material. Therefore, we chose a CoNi-ZIF (zeolitic imidazolate framework)-derived bimetallic-doped nitrogen-rich porous carbon composite with transition metal cerium oxide as the cathode material. CeO2 nanoparticles have a strong ability to trap polysulfide, and CoNi-NC can confine sulfur in the ordered pore structure and improve the electrical conductivity of the active material. The experimental results show that CoNi-NC@CeO2-2 has good electrochemical performance with a specific capacity of 1245 mAh g− 1 at the first discharge at 0.1 C. It indicates that the composite can inhibit the formation of shuttle effect and upgrade the reaction kinetic performance of the battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data from the results of this study are provided in the article.

References

  1. Z. Yang, Z. Zhao, H. Zhou, M. Cheng, R. Yan, X. Tao, S. Li, X. Liu, C. Cheng, F. Ran, ACS Appl. Mater. Interfaces 13, 51174 (2021)

    Article  CAS  Google Scholar 

  2. W. Dong, D. Wang, X. Li, Y. Yao, X. Zhao, Z. Wang, H.-E. Wang, Y. Li, L. Chen, D. Qian, B.-L. Su, J. Energy Chem. 48, 259 (2020)

    Article  Google Scholar 

  3. M. Rana, B. Luo, M.R. Kaiser, I. Gentle, R. Knibbe, J. Energy Chem. 42, 195 (2020)

    Article  Google Scholar 

  4. L. Kong, L. Yin, F. Xu, J. Bian, H. Yuan, Z. Lu, Y. Zhao, J. Energy Chem. 55, 80 (2021)

    Article  CAS  Google Scholar 

  5. Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Angew Chem. Int. Ed. 52, 13186 (2013)

    Article  CAS  Google Scholar 

  6. Y. Li, S. Guo, Matter 4, 1142 (2021)

    Article  CAS  Google Scholar 

  7. X. Liu, S. Wang, A. Wang, Z. Wang, J. Chen, Q. Zeng, P. Chen, W. Liu, Z. Li, L. Zhang, J. Mater. Chem. A 7, 24515 (2019)

    Article  CAS  Google Scholar 

  8. H. Lin, L. Yang, X. Jiang, G. Li, T. Zhang, Q. Yao, G.W. Zheng, J.Y. Lee, Energy Environ. Sci. 10, 1476 (2017)

    Article  CAS  Google Scholar 

  9. R. Saroha, Y.H. Seon, B. Jin, Y.C. Kang, D.-W. Kang, S.M. Jeong, J.S. Cho, Chem. Eng. J 446, 137141 (2022)

    Article  CAS  Google Scholar 

  10. C. Zheng, S. Niu, W. Lv, G. Zhou, J. Li, S. Fan, Y. Deng, Z. Pan, B. Li, F. Kang, Q.-H. Yang, Nano Energy 33, 306 (2017)

    Article  CAS  Google Scholar 

  11. Y. Liu, H. Wei, X. Zhai, F. Wang, X. Ren, Y. Xiong, O. Akiyoshi, K. Pan, F. Ren, S. Wei, Mater. Design 211, 110171 (2021)

    Article  CAS  Google Scholar 

  12. Q. Hao, G. Cui, Y. Tian, T. Tan, Y. Zhang, Materials 11, 1720 (2018)

    Article  Google Scholar 

  13. X. Zhang, H. Zhou, J.-G. Wang, J. Mater. Sci. 56, 3364 (2021)

    Article  CAS  Google Scholar 

  14. J. Liu, S. Xiao, L. Chang, L. Lai, R. Wu, Y. Xiang, X. Liu, J. Song, Chen, J. Energy Chem. 56, 343 (2021)

    Article  CAS  Google Scholar 

  15. W. Feng, W. Zhao, Z. Shi, J. Chen, J. Mater. Sci: Mater. Electron. 33, 17483 (2022)

    CAS  Google Scholar 

  16. W. Feng, J. Chen, Y. Niu, W. Zhao, L. Zhang, J. Alloys Compd 906, 164341 (2022)

    Article  CAS  Google Scholar 

  17. Y. Cui, K. Yang, Y. Lyu, P. Liu, Q. Zhang, B. Zhang, Carbon 196, 49 (2022)

    Article  CAS  Google Scholar 

  18. W. Zhao, W. Feng, J. Chen, Y. Niu, L. Zhang, J. Alloys Compd 923, 166435 (2022)

    Article  CAS  Google Scholar 

  19. K. Xiao, J. Wang, Z. Chen, Y. Qian, Z. Liu, L. Zhang, X. Chen, J. Liu, X. Fan, Z.X. Shen, Small 15, 1901454 (2019)

    Article  Google Scholar 

  20. Z. Liu, L. Zhou, Q. Ge, R. Chen, M. Ni, W. Utetiwabo, X. Zhang, W. Yang, ACS Appl. Mater. Interfaces 10, 19311 (2018)

    Article  CAS  Google Scholar 

  21. Y. Zhang, W. Tang, R. Zhan, H. Liu, H. Chen, J. Yang, M. Xu, Inorg. Chem. Front. 6, 2894 (2019)

    Article  CAS  Google Scholar 

  22. X. Ren, C. Lu, S. Yuan, Z. Liu, M. Zhang, D. Li, J. Alloys Compd 905, 164182 (2022)

    Article  CAS  Google Scholar 

  23. J. Wu, Z. Pan, Y. Zhang, B. Wang, H. Peng, J. Mater. Chem. A 6, 12932 (2018)

    Article  CAS  Google Scholar 

  24. L. Wu, S. Tang, R. Qu, J. Mater. Sci: Mater. Electron. 30, 189 (2019)

    CAS  Google Scholar 

  25. K. Lv, P. Wang, C. Wang, Z. Shen, Z. Lu, H. Zhang, M. Zheng, P. He, H. Zhou, Small 16, 2000870 (2020)

    Article  CAS  Google Scholar 

  26. C. Wang, F. Wang, Z. Liu, Y. Zhao, Y. Liu, Q. Yue, H. Zhu, Y. Deng, Y. Wu, D. Zhao, Nano Energy 41, 674 (2017)

    Article  CAS  Google Scholar 

  27. Q. Ban, Y. Liu, P. Liu, Y. Li, Y. Qin, Y. Zheng, Microporous Mesoporous Mater 335, 111803 (2022)

    Article  CAS  Google Scholar 

  28. J. Chen, X. Wang, W. Feng, W. Zhao, Z. Shi, J. Solid State Electrochem. 25, 2065 (2021)

    Article  CAS  Google Scholar 

  29. Z. Gao, L. Wang, J. Chang, C. Chen, D. Wu, F. Xu, K. Jiang, J. Power Sources 348, 158 (2017)

    Article  CAS  Google Scholar 

  30. M. Li, W. Feng, W. Su, X. Wang, J. Solid State Electrochem. 23, 2317 (2019)

    Article  CAS  Google Scholar 

  31. S. Yasmeen, F. Iqbal, T. Munawar, M.A. Nawaz, M. Asghar, A. Hussain, Ceram. Int 45, 17859 (2019)

    Article  CAS  Google Scholar 

  32. J. Chen, W. Feng, W. Zhao, Appl. Surf. Sci 584, 152613 (2022)

    Article  CAS  Google Scholar 

  33. W. Gao, Y. Liu, Y. Zhang, N. Baikalov, A. Konarov, Z. Bakenov, J. Alloys Compd 882, 160728 (2021)

    Article  CAS  Google Scholar 

  34. D. Xiao, C. Lu, C. Chen, S. Yuan, Energy Storage Materials 10, 216 (2018)

    Article  Google Scholar 

  35. J. Li, Y. Wang, Z. Yin, R. He, Y. Wang, J. Qiao, J. Energy Chem. 66, 348 (2022)

    Article  CAS  Google Scholar 

  36. X. Zhang, Z. Yu, C. Wang, Y. Gong, B. Ai, L. Zhang, J. Wang, J. Mater. Sci. 56, 10030 (2021)

    Article  CAS  Google Scholar 

  37. R. Meng, Q. Du, N. Zhong, X. Zhou, S. Liu, S. Yin, X. Liang, Adv. Energy Mater. 11, 2102819 (2021)

    Article  CAS  Google Scholar 

  38. X. Luo, L. Sun, F. Xu, Z. Cao, J. Zeng, Y. Bu, C. Zhang, Y. Xia, Y. Zou, K. Zhang, H. Pan, J. Alloys Compd 930, 167339 (2023)

    Article  CAS  Google Scholar 

  39. Y.-L. Wang, S.-H. Yang, H.-Y. Wang, G.-S. Wang, X.-B. Sun, P.-G. Yin, Carbon 167, 485 (2020)

    Article  CAS  Google Scholar 

  40. T. Wang, D. Su, Y. Chen, K. Yan, L. Yu, L. Liu, Y. Zhong, P.H.L. Notten, C. Wang, G. Wang, Chem. Eng. J 401, 126079 (2020)

    Article  CAS  Google Scholar 

  41. Y. Jeon, J. Lee, H. Jo, H. Hong, L.Y.S. Lee, Y. Piao, Chem. Eng. J 407, 126967 (2021)

    Article  CAS  Google Scholar 

  42. M. Kim, J. Lee, Y. Jeon, Y. Piao, Nanoscale 11, 13758 (2019)

    Article  CAS  Google Scholar 

  43. S.N. Naidi, F. Khan, A.L. Tan, M.H. Harunsani, Y.-M. Kim, M.M. Khan, Biomater. Sci. 9, 4854 (2021)

    Article  CAS  Google Scholar 

  44. H. Wu, Z. Li, Z. Wang, Y. Ma, S. Huang, F. Ding, F. Li, Q. Zhai, Y. Ren, X. Zheng, Y. Yang, S. Tang, Y. Deng, X. Meng, Appl. Catal. B 325, 122356 (2023)

    Article  CAS  Google Scholar 

  45. S. Soni, R. Kumar, A. Sodhiya, S. Patel, J. Mater. Sci: Mater. Electron. 33, 23375 (2022)

    CAS  Google Scholar 

  46. G. Liu, Q. Zeng, X. Sui, S. Tian, X. Li, Q. Wu, X. Wang, K. Tao, E. Xie, Z. Zhang, J. Power Sources 552, 232244 (2022)

    Article  CAS  Google Scholar 

  47. X. Zhou, J. Tian, Q. Wu, J. Hu, C. Li, Energy Storage Materials 24, 644 (2020)

    Article  Google Scholar 

  48. J.-Y. Eom, S.-I. Kim, V. Ri, C. Kim, Chem. Commun. 55, 14609 (2019)

    Article  CAS  Google Scholar 

  49. Y. Wu, C. Wang, Z. Yang, D. Song, T. Ohsaka, F. Matsumoto, X. Sun, J. Wu, RSC Adv. 11, 34955 (2021)

    Article  CAS  Google Scholar 

  50. M. Li, W. Feng, X. Wang, J. Alloys Compd 853, 157194 (2021)

    Article  CAS  Google Scholar 

  51. D.M. Brieske, A. Warnecke, D.U. Sauer, J. Energy Storage 43, 103148 (2021)

    Article  Google Scholar 

  52. S. Waluś, C. Barchasz, R. Bouchet, F. Alloin, Electrochim. Acta 359, 136944 (2020)

    Article  Google Scholar 

  53. Z. Li, F. Zhang, L. Tang, Y. Tao, H. Chen, X. Pu, Q. Xu, H. Liu, Y. Wang, Y. Xia, Chem. Eng. J 390, 124653 (2020)

    Article  CAS  Google Scholar 

  54. S. Huang, Y.V. Lim, X. Zhang, Y. Wang, Y. Zheng, D. Kong, M. Ding, S.A. Yang, H.Y. Yang, Nano Energy 51, 340 (2018)

    Article  CAS  Google Scholar 

  55. L. Luo, A. Manthiram, ACS Energy Lett 2, 2205 (2017)

    Article  CAS  Google Scholar 

  56. W. Bao, L. Liu, C. Wang, S. Choi, D. Wang, G. Wang, Adv. Energy Mater. 8, 1702485 (2018)

    Article  Google Scholar 

  57. L. Zhang, X. Chen, F. Wan, Z. Niu, Y. Wang, Q. Zhang, J. Chen, ACS Nano 12, 9578 (2018)

    Article  CAS  Google Scholar 

  58. Y. Huang, D. Lv, Z. Zhang, Y. Ding, F. Lai, Q. Wu, H. Wang, Q. Li, Y. Cai, Z. Ma, Chem. Eng. J 387, 124122 (2020)

    Article  CAS  Google Scholar 

  59. W. Wang, Y. Zhao, Y. Zhang, J. Wang, G. Cui, M. Li, Z. Bakenov, X. Wang, ACS Appl. Mater. Interfaces 12, 12763 (2020)

    Article  CAS  Google Scholar 

  60. Y. Zhang, S. Yao, R. Zhuang, K. Luan, X. Qian, J. Xiang, X. Shen, T. Li, K. Xiao, S. Qin, J. Alloys Compd 729, 1136 (2017)

    Article  CAS  Google Scholar 

  61. X. Zhang, J. Zheng, Appl. Surf. Sci 493, 1159 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No.21965019), HongLiu First-class Disciplines Development Program of Lanzhou University of Technology and Key Project of Natural Science Foundation of Gansu Province (Grant No.22JR5RA313), Lanzhou Talent Innovation and Entrepreneurship Project (Approval No.114), The First Batch of Lanzhou Science and Technology Planning Projects in 2019(2019-1-46).

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No.21965019) and Key Project of Natural Science Foundation of Gansu Province (Grant No.22JR5RA313).

Author information

Authors and Affiliations

Authors

Contributions

WF: Writing—review. YN: Data curation and WritingOriginal draft preparation. XZ: Methodology. WS: Conceptualization and Software. JC: investigation and Software. LZ: Supervision.

Corresponding author

Correspondence to Yueping Niu.

Ethics declarations

Conflict of interest

The authors state that no associated financial obligations are affecting the work of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, W., Niu, Y., Zheng, X. et al. Use of CoNi-ZIF (zeolitic imidazolate framework)-derived bimetal-doped nitrogen-rich porous carbon composite transition metal oxides in lithium–sulfur batteries. J Mater Sci: Mater Electron 34, 779 (2023). https://doi.org/10.1007/s10854-023-10164-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10164-9

Navigation