Skip to main content

Advertisement

Log in

CoNi-embedded nitrogen-enriched porous carbon framework for long-life lithium–sulfur batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Metal–organic framework (MOF) derivatives are excellent energy storage devices such as lithium–sulfur batteries. Here, a bimetallic (CoNi)-embedded nitrogen-enriched carbon framework was synthesized by a simple metal-doped zeolitic imidazolate framework thermal conversion strategy. CoNi-NC materials have a large specific surface area and a pore-rich structure. This unique structure interacts with a cobalt-based electroactive phase and a secondary metal to enhance electrochemical performance. By changing the molar ratio of nickel to cobalt and selecting the best bimetallic nitrogen-doped carbon framework, the initial discharge capacity of the lithium–sulfur battery with Co0.75Ni0.25-NC as the electrode material was 1278 mA h g−1 at 0.1 C, with excellent rate performance and good cycle stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liang X, Rangom Y, Kwok CY, Pang Q, Nazar LF (2017) Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv Mater 29(3):1603040

    Article  CAS  Google Scholar 

  2. Li G, Chen Z, Lu J (2018) Lithium-sulfur batteries for commercial applications. Chem 4(1):3–7

    Article  CAS  Google Scholar 

  3. Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114(23):11751–11787

    Article  CAS  PubMed  Google Scholar 

  4. Hu L, Dai C, Liu H, Li Y, Shen B, Chen Y, Bao S-J, Xu M (2018) Double-shelled NiO-NiCo2O4 heterostructure@carbon hollow nanocages as an efficient sulfur host for advanced lithium-sulfur batteries. Adv Energy Mater 8(23):1800709

    Article  CAS  Google Scholar 

  5. Liang Z, Zheng G, Li W, Seh ZW, Yao H, Yan K, Kong D, Cui Y (2014) Cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano 8(5):5249–5256

    Article  CAS  PubMed  Google Scholar 

  6. Dai C, Hu L, Wang M-Q, Chen Y, Han J, Jiang J, Zhang Y, Shen B, Niu Y, Bao S-J, Xu M (2017) Uniform α-Ni(OH)2 hollow spheres constructed from ultrathin nanosheets as efficient polysulfide mediator for long-term lithium-sulfur batteries. Energy Storage Mater 8:202–208

    Article  Google Scholar 

  7. Cheng X-B, Huang J-Q, Zhang Q, Peng H-J, Zhao M-Q, Wei F (2014) Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries. Nano Energy 4:65–72

    Article  CAS  Google Scholar 

  8. Sun L, Wang D, Luo Y, Wang K, Kong W, Wu Y, Zhang L, Jiang K, Li Q, Zhang Y, Wang J, Fan S (2016) Sulfur embedded in a mesoporous carbon nanotube network as a binder-free electrode for high-performance lithium–sulfur batteries. ACS Nano 10(1):1300–1308

    Article  CAS  PubMed  Google Scholar 

  9. Hu G, Xu C, Sun Z, Wang S, Cheng H-M, Li F, Ren W (2016) 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Adv Mater 28(8):1603–1609

    Article  CAS  PubMed  Google Scholar 

  10. Li GR, Wang QQ, Liu BH, Li ZP (2015) Porous carbon as anode catalyst support to improve borohydride utilization in a direct borohydride fuel cell. Fuel Cells 15(2):270–277

    Article  CAS  Google Scholar 

  11. Xia L, Wang S, Liu G, Ding L, Li D, Wang H, Qiao S (2016) Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life. Small 12(7):853–859

    Article  CAS  PubMed  Google Scholar 

  12. Liu S, Li J, Yan X, Su Q, Lu Y, Qiu J, Wang Z, Lin X, Huang J, Liu R, Zheng B, Chen L, Fu R, Wu D (2018) Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries. Adv Mater 30(12):1706895

    Article  CAS  Google Scholar 

  13. Zhao R, Liang Z, Zou R, Xu Q (2018) Metal-organic frameworks for batteries. Joule 2(11):2235–2259

    Article  CAS  Google Scholar 

  14. Zhou X, Tian J, Hu J, Li C (2018) High rate magnesium-sulfur battery with improved cyclability based on metal-organic framework derivative carbon host. Adv Mater 30(7):1704166

    Article  CAS  Google Scholar 

  15. Xia W, Mahmood A, Zou R, Xu Q (2015) Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci 8(7):1837–1866

    Article  CAS  Google Scholar 

  16. Xue W, Yan Q-B, Xu G, Suo L, Chen Y, Wang C, Wang C-A, Li J (2017) Double-oxide sulfur host for advanced lithium-sulfur batteries. Nano Energy 38:12–18

    Article  CAS  Google Scholar 

  17. Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B (2016) Metal–organic frameworks for energy storage: batteries and supercapacitors. Coord Chem Rev 307:361–381

    Article  CAS  Google Scholar 

  18. Wang H, Zhu Q-L, Zou R, Xu Q (2017) Metal-organic frameworks for energy applications. Chem 2(1):52–80

    Article  CAS  Google Scholar 

  19. Salunkhe RR, Young C, Tang J, Takei T, Ide Y, Kobayashi N, Yamauchi Y (2016) A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chem Commun 52(26):4764–4767

    Article  CAS  Google Scholar 

  20. Ai K, Li Z, Cui X (2017) Scalable preparation of sized-controlled Co-N-C electrocatalyst for efficient oxygen reduction reaction. J Power Sources 368:46–56

    Article  CAS  Google Scholar 

  21. Tang J, Salunkhe RR, Liu J, Torad NL, Imura M, Furukawa S, Yamauchi Y (2015) Thermal conversion of core–shell metal–organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J Am Chem Soc 137(4):1572–1580

    Article  CAS  PubMed  Google Scholar 

  22. Liang C, Zhang X, Zhao Y, Tan T, Zhang Y (2019) TiO2 nanoparticles anchored on three-dimensionally ordered macro/mesoporous carbon matrix as polysulfides’ immobilizers for high performance lithium/sulfur batteries. J Solid State Electrochem 23(2):565–572

    Article  CAS  Google Scholar 

  23. Yuan G, Jin H, Jin Y, Wu L (2018) Hybrids of MnO2 nanoparticles anchored on graphene sheets as efficient sulfur hosts for high-performance lithium sulfur batteries. J Solid State Electrochem 22(3):693–703

    Article  CAS  Google Scholar 

  24. Carter R, Oakes L, Muralidharan N, Cohn AP, Douglas A, Pint CL (2017) Polysulfide anchoring mechanism revealed by atomic layer deposition of V2O5 and sulfur-filled carbon nanotubes for lithium–sulfur batteries. ACS Appl Mater Interfaces 9(8):7185–7192

    Article  CAS  PubMed  Google Scholar 

  25. Ren J, Meng Q, Xu Z, Zhang X, Chen J (2019) CoS2 hollow nanocubes derived from Co-Co Prussian blue analogue: high-performance electrode materials for supercapacitors. J Electroanal Chem 836:30–37

    Article  CAS  Google Scholar 

  26. Hu H, Guan B, Xia B, Lou XW(D) (2015) Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J Am Chem Soc 137(16):5590–5595

    Article  CAS  PubMed  Google Scholar 

  27. Feng X, Bo X, Guo L (2018) CoM(M=Fe,Cu,Ni)-embedded nitrogen-enriched porous carbon framework for efficient oxygen and hydrogen evolution reactions. J Power Sources 389:249–259

    Article  CAS  Google Scholar 

  28. Su W (2018) Porous honeycomb-like carbon prepared by a facile sugar- blowing method for high-performance lithium-sulfur batteries. Int J Electrochem Sci 6005–6014

  29. Cao Y (2017) Bio-synthesis of LiFePO4/C composites for lithium ion battery. Int J Electrochem Sci 9084–9093

  30. Wang X, Zhou J, Fu H, Li W, Fan X, Xin G, Zheng J, Li X (2014) MOF derived catalysts for electrochemical oxygen reduction. J Mater Chem A 2(34):14064–14070

    Article  CAS  Google Scholar 

  31. Tian W, Zhang H, Qian Z, Ouyang T, Sun H, Qin J, Tadé MO, Wang S (2018) Bread-making synthesis of hierarchically Co@C nanoarchitecture in heteroatom doped porous carbons for oxidative degradation of emerging contaminants. Appl Catal B Environ 225:76–83

    Article  CAS  Google Scholar 

  32. Yu L, Guan B, Xiao W, Lou XWD (2015) Formation of yolk-shelled Ni-co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv Energy Mater 5(21):1500981

    Article  CAS  Google Scholar 

  33. Liu T, Li M, Dong P, Zhang Y, Guo L (2018) Design and facile synthesis of mesoporous cobalt nitride nanosheets modified by pyrolytic carbon for the nonenzymatic glucose detection. Sens Actuators B Chem 255:1983–1994

    Article  CAS  Google Scholar 

  34. Hu C, Dai L (2017) Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Adv Mater 29(9):1604942

    Article  CAS  Google Scholar 

  35. Zhang X, Ji G, Liu W, Zhang X, Gao Q, Li Y, Du Y (2016) A novel co/TiO2 nanocomposite derived from a metal–organic framework: synthesis and efficient microwave absorption. J Mater Chem C 4(9):1860–1870

    Article  CAS  Google Scholar 

  36. Ma Z, Li Z, Hu K, Liu D, Huo J, Wang S (2016) The enhancement of polysulfide absorbsion in Li S batteries by hierarchically porous CoS2/carbon paper interlayer. J Power Sources 325:71–78

    Article  CAS  Google Scholar 

  37. Wang Y, Wu W, Rao Y, Li Z, Tsubaki N, Wu M (2017) Cation modulating electrocatalyst derived from bimetallic metal–organic frameworks for overall water splitting. J Mater Chem A 5(13):6170–6177

    Article  CAS  Google Scholar 

  38. Yang X, Qian X, Jin L, Zhao D, Wang S, Rao D (2016) Mesoporous TiO2 nanosheet with a large amount of exposed {001} facets as sulfur host for high-performance lithium–sulfur batteries. J Solid State Electrochem 20(8):2161–2168

    Article  CAS  Google Scholar 

  39. Li Q, Zhang Z, Zhang K, Xu L, Fang J, Lai Y, Li J (2013) Synthesis and electrochemical performance of TiO2–sulfur composite cathode materials for lithium–sulfur batteries. J Solid State Electrochem 17(11):2959–2965

    Article  CAS  Google Scholar 

  40. Cai W, Li G, Luo D, Xiao G, Zhu S, Zhao Y, Chen Z, Zhu Y, Qian Y (2018) The dual-play of 3D conductive scaffold embedded with co, N codoped hollow polyhedra toward high-performance Li-S full cell. Adv Energy Mater 8(34):1802561

    Article  CAS  Google Scholar 

  41. Yang Y, Wang Z, Jiang T, Dong C, Mao Z, Lu C, Sun K (2018) A heterogenized Ni-doped zeolitic imidazolate framework to guide efficient trapping and catalytic conversion of polysulfides for greatly improved lithium–sulfur batteries. J Mater Chem A 6(28):13593–13598

    Article  CAS  Google Scholar 

  42. Feng S, Zhong H, Song J, Zhu C, Dong P, Shi Q, Liu D, Li J, Chang Y-C, Beckman SP, Song M, Du D, Lin Y (2018) Catalytic activity of co–X (X = S, P, O) and its dependency on nanostructure/chemical composition in lithium–sulfur batteries. ACS Appl Energy Mater 1(12):7014–7021

    Article  CAS  Google Scholar 

  43. Fang R, Zhao S, Sun Z, Wang D-W, Cheng H-M, Li F (2017) More reliable Lithium-sulfur batteries: status, solutions and prospects. Adv Mater 29(48):1606823

    Article  CAS  Google Scholar 

  44. Wang J, Li S, Zhao Y, Shi J, Lv L, Wang H, Zhang Z, Feng W (2018) The influence of different Si : C ratios on the electrochemical performance of silicon/carbon layered film anodes for lithium-ion batteries. RSC Adv 8(12):6660–6666

    Article  CAS  Google Scholar 

  45. Cai W, Li G, Zhang K, Xiao G, Wang C, Ye K, Chen Z, Zhu Y, Qian Y (2018) Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries. Adv Funct Mater 28(2):1704865

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No.11264023) and the HongLiu first-class disciplines Development Program of Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangjun Feng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Feng, W., Su, W. et al. CoNi-embedded nitrogen-enriched porous carbon framework for long-life lithium–sulfur batteries. J Solid State Electrochem 23, 2317–2324 (2019). https://doi.org/10.1007/s10008-019-04346-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04346-x

Keywords

Navigation