Skip to main content
Log in

Multilayer stack structural designing of titania and zinc white using atomic layer deposition (ALD) technique and study of thermally governed dielectric dispersion and conduction under alternating electric fields

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The a.c. conduction and the dielectric response were performed on bi-layers and quadri-layers of transparent Titania and Zinc white (i.e., TiO2/ZnO) thin film oxides of 100 nm thickness, deposited using an atomic layer deposition (ALD) system at 200 °C on silicon (100) substrates. The results show that Jonscher’s power law obeys a.c. conductivity (σac) with respect to the frequency dependence. The behavior of (σac) and the change of the frequency exponent (s) with temperature confirm the usage of correlated barrier hopping (CBH) mechanism for conduction. The dielectric response of the dielectric constant (ε′) and the dielectric loss (ε″) with increasing temperature as well as frequency are also analyzed. The consequences of the rise in the number of layers in the designed multilayer stacks are also investigated. Further, the presence of Meyer–Neldel relation in thermally triggered a.c. conduction in both thin-film samples are also reported. The results are explained using the cBΩ model and in terms of applicability for the corresponding relaxation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data underlying this article are available in the article. The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. K.C.L. Bauerfeind, J. Laun, M. Frisch, R. Kraehnert, T. Bredow, Metal substitution in rutile TiO2: segregation energy and conductivity. J. Elect. Mater. 51, 609–620 (2022)

    Article  CAS  Google Scholar 

  2. H. Ji, J. Wei, D. Natelson, Modulation of the electrical properties of VO2 nanobeams using an ionic liquid as a gating medium. Nano Lett. 12, 2988–2992 (2012)

    Article  CAS  Google Scholar 

  3. P. Kumbhakar, C.C. Gowda, P. Mahapatra, M. Mukherjee, K.D. Malviya, M. Chaker, A. Chandra, B. Lahiri, P. Ajayan, D. Jariwala, A. Singh, C. Tiwary, Emerging 2D metal oxides and their applications. Mater. Today 45, 142–168 (2021)

    Article  CAS  Google Scholar 

  4. Y. Feng, X. Jiang, E. Ghafari, B. Kucukgok, C. Zhang, I. Ferguson, N. Lu, Metal oxides for thermoelectric power generation and beyond. Adv. Compos. Hybrid. Mater. 1, 114–126 (2018)

    Article  CAS  Google Scholar 

  5. C.A.Y. Zhang, H. Guo, Y. Wang, Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Adv. 1, 4644–4658 (2019)

    Article  Google Scholar 

  6. T.R. Kumar, P. Prabukanthan, G. Harichandran, R. Senthil, T. Arunkumar, J. Theerthagiri, A simple, economical, and quick electrochemical deposition of rare-earth metal ion–doped ZnSe/FeS2 double-layer thin films with enhanced photoelectrochemical performance. Ionics 25, 6115–6122 (2019)

    Article  CAS  Google Scholar 

  7. P. Prabukanthan, M. Sreedhar, G. Harichandran, T. Tatarchuk, K. Dinakaran, S. Uthayakumar, A. Younis, Physicochemical and electrocatalytic performance of chromium doped iron pyrite thin films. Phys. Chem. Sol Stat. 23, 134–143 (2023)

    Article  Google Scholar 

  8. J. Tao, J. Jiang, S.-N. Zhao, Y. Zhang, X.-X. Li, X. Fang, P. Wang, W. Hu, Y.H. Lee, H.-L. Lu, D.-W. Zhang, Fabrication of 1D Te/2D ReS2 mixed-dimensional van der waals p-n heterojunction for high-performance phototransistor. ACS Nano 15, 3241–3250 (2021)

    Article  CAS  Google Scholar 

  9. Z. Zhao, J. Tian, Y. Sang, A. Cabot, H. Liu, Structure, synthesis, and applications of TiO2 nanobelts. Adv. Mater. 27, 2557–2582 (2015)

    Article  CAS  Google Scholar 

  10. J.M. Rzaij, A.M. Abass, Review on: TiO2 thin film as a metal oxide gas sensor. J. Chem. Rev. 2, 114–121 (2020)

    Article  CAS  Google Scholar 

  11. Y.-C. Nah, I. Paramasivam, P. Schmuki, Doped TiO2 and TiO2 nanotubes: synthesis and applications. ChemPhysChem 11, 2698–2713 (2020)

    Article  Google Scholar 

  12. J. Tao, H. Ma, K. Yuan, Y. Gu, J.-W. Lian, X.-X. Li, W. Huang, M. Nolan, H.-L. Lu, D.-W. Zhang, Modification of 1D TiO2 nanowires with GaOxNy by atomic layer deposition for TiO2@GaOxNy core–shell nanowires with enhanced photoelectrochemical performance. Nanoscale 12, 7159–7173 (2020)

    Article  CAS  Google Scholar 

  13. P. Prabukanthan, G. Harichandran, Effect of 100 MeV O7+ ion beam irradiation on radio frequency reactive magnetron sputtered ZnO thin films. Mater. Sci. Semicond. Process. 16, 193–199 (2013)

    Article  CAS  Google Scholar 

  14. J. Tao, H.-L. Lu, Y. Gu, H. Ma, X. Li, J.-X. Chen, W. Liu, H. Zhang, J. Feng, Investigation of growth characteristics, compositions, and properties of atomic layer deposited amorphous Zn-doped Ga2O3 films. Appl. Surf. Sci. 476, 733–740 (2019)

    Article  CAS  Google Scholar 

  15. D.K. Sharma, S. Shukla, K.K. Sharma, V. Kumar, A review on ZnO: fundamental properties and applications. Mater. Today: Proc. 49, 3028–3035 (2022)

    CAS  Google Scholar 

  16. N. Mehta, Chap. 1, “Overview of coating deposition techniques,” in Tribology and Characterization of Surface Coatings. ed. by S. Ahmed, V.S. Dakre (Hoboken, Wiley-Scrivener, 2022), pp.1–32

    Google Scholar 

  17. T.J. Kunene, L.K. Tartibu, K. Ukoba, T. Jen, Review of atomic layer deposition process, application and modeling tools. Mater. Today: Proc. 62, 95–109 (2022)

    Google Scholar 

  18. H.C.M. Knoops, S.E. Potts, A.A. Bol, W.M.M. Kessels, Ch 27—atomic layer deposition in handbook of crystal growth edited by T. Kuech (Elsevier, Amsterdam, 2015), pp.1101–1134

    Google Scholar 

  19. J. Zhang, Y. Li, K. Cao, R. Chen, Advances in atomic layer deposition. Nanomanuf. Metrol. (2022). https://doi.org/10.1007/s41871-022-00136-8

    Article  Google Scholar 

  20. H. Kim, H.-B.-R. Lee, W.-J. Maeng, Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 517, 2563–2580 (2009)

    Article  CAS  Google Scholar 

  21. R. Hussin, K. Choy, X. Hou, Enhancement of crystallinity and optical properties of bilayer TiO2/ZnO thin films prepared by atomic layer deposition. J. Nanosci. Nanotechnol. 11, 8143–8147 (2011)

    Article  CAS  Google Scholar 

  22. W.-K. Wang, H. Wen, C.-H. Cheng, C. Hung, W. Chou, W. Yau, P.-F. Yang, Y. Lai, Nanotribological properties of ALD-processed bilayer TiO2/ZnO films. Microelectron. Reliab. 54, 2754–2759 (2014)

    Article  CAS  Google Scholar 

  23. S.S. Fouad, B. Parditka, A.E. Bekheet, H.E. Atyia, Z. Erdelyi, ALD of TiO2/ZnO mutilayers towards the understanding of optical properties and polarizability. Opt. Las. Tech. 140, 107035 (2021)

    Article  CAS  Google Scholar 

  24. A. Amini, M.S. Zakerhamidi, S. Khorram, Treatment of the ZnO and TiO2 thin films by electric field in plasma sheath to improve the metal-dye electronic coupling in dye-sensitized solar cells. Surf. Interfaces 23, 101028 (2021)

    Article  CAS  Google Scholar 

  25. H.S. Varaprasad, P.V. Sridevi, M.S. Anuradha, Optical, morphological, electrical properties of ZnO-TiO2-SnO2/CeO2 semiconducting ternary nanocomposite. Adv. Powder Technol. 32, 1472–1480 (2021)

    Article  Google Scholar 

  26. H. Zakaa, B. Parditka, Z. Erdelyi, H.E. Atyia, P. Sharma, S.S. Fouad, Investigation of dispersion parameters, dielectric properties and opto-electrical parameters of ZnO thin film grown by ALD. Optik 203, 163933 (2020)

    Article  Google Scholar 

  27. P.K. Singh, S.K. Sharma, S.K. Tripathi, D.K. Dwivedi, Study of dielectric relaxation and thermally activated a.c. conduction in multicomponent Ge10 – xSe60Te30Inx (0 ≤ x ≤ 6) chalcogenide glasses using CBH model. Res. Phys. 12, 223–236 (2019)

    Google Scholar 

  28. E.G. El-Metwally, N.A. Hegab, M. Mostfa, The ac conduction mechanism and dielectric relaxation behavior of amorphous Te81Ge15Bi4 chalcogenide glass thin films. J. Mater. Sci. : Mater. Electron. 33, 12384–12396 (2022)

    CAS  Google Scholar 

  29. A. Sharma, N. Mehta, Study of dielectric relaxation and thermally activated a.c. conduction in lead-containing topological glassy semiconductors. RSC Adv. 7, 19085–19097 (2017)

    Article  CAS  Google Scholar 

  30. Y.H. Elbashar, A.M. Badr, H.A. Elshaikh, A.G. Mostafa, A.M. Ibrahim, Dielectric and optical properties of CuO containing sodium zinc phosphate glasses. Proc. Appl. Ceram. 10, 277–286 (2016)

    Article  CAS  Google Scholar 

  31. M.P. Weides, J.S. Kline, M.R. Vissers, M.O. Sandberg, D.S. Wisbey, B.R. Johnson, T.A. Ohki, D.P. Pappas, Coherence in a transmon qubit with epitaxial tunnel junctions. Appl. Phys. Lett. 99, 262502 (2011)

    Article  Google Scholar 

  32. A. Hashemi, A. Bahari, S. Ghasemi, Synthesis and characterization of cross-linked nanocomposite as a gate dielectric for p-type silicon field-effect transistor. J. Electron. Mater. 47, 3717–3726 (2018)

    Article  CAS  Google Scholar 

  33. A. Bahari, A. Mahya Ghovati, Hashemi, Studying of SiO2/capron nanocomposite as a gate dielectric film for improved threshold voltage. Appl. Phys. A 125, 257 (2019)

    Article  Google Scholar 

  34. M. Shahbazi, A. Bahari, S. Ghasemi, Structural and frequency-dependent dielectric properties of PVP-SiO2-TMSPM hybrid thin films. Org. Electron. 32, 100–108 (2016)

    Article  CAS  Google Scholar 

  35. M. Shahbazi, A. Bahari, S. Ghasemi, Studying saturation mobility, threshold voltage, and stability of PMMA-SiO2-TMSPM nano-hybrid as OFET gate dielectric. Synth. Metals 221, 332–339 (2016)

    Article  CAS  Google Scholar 

  36. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)

    Article  CAS  Google Scholar 

  37. A.K. Jonscher, A new understanding of the dielectric relaxation of solids. J. Mater. Sci. 16, 2037–2060 (1981)

    Article  CAS  Google Scholar 

  38. F. Abdel-Wahab, Signature of the Meyer–Neldel rule on the correlated barrier-hopping model. J. Appl. Phys. 91, 265 (2002)

    Article  CAS  Google Scholar 

  39. F. Abdel-Wahab, The normal and inverted Meyer-Neldel rule in the ac conductivity. Turk. J. Phys. 28, 133 (2004)

    CAS  Google Scholar 

  40. S.R. Elliot, A theory of a.c. conduction in chalcogenide glasses. Philos. Mag. 36, 1291–1304 (1977)

    Article  Google Scholar 

  41. K. Shimakawa, On the temperature dependence of ac conduction in chalcogenide glasses. Philos. Mag. B 46, 123 (1982)

    Article  CAS  Google Scholar 

  42. J.C. Dyre, The random free-energy barrier model for ac conduction in disordered solids. J. Appl. Phys. 64, 2456 (1988)

    Article  Google Scholar 

  43. J.M. Hvam, M.H. Brodsky, Dispersive transport and recombination lifetime in phosphorus-doped hydrogenated amorphous silicon. Phys. Rev. Lett. 46, 371 (1981)

    Article  CAS  Google Scholar 

  44. J.C. Dyre, A phenomenological model for the Meyer-Neldel rule. J. Phys. C 19, 5655 (1986)

    Article  Google Scholar 

  45. J.C. Dyre, A phenomenological model for the Meyer-Neldel rule: erratum. J. Phys. C 21, 2431 (1988)

    Article  Google Scholar 

  46. N. Chandel, N. Mehta, Explanation of Meyer–Neldel rule in the thermally activated a.c. conduction in some chalcogenide glasses using correlated barrier hopping model. J. Mater. Sci. 47, 6693–6698 (2012)

    Article  CAS  Google Scholar 

  47. A. Kumar, N. Mehta, Universality of Meyer-Neldel relation: case study of thermally activated a.c. conduction under laser irradiation. J. Phys. Chem. Sol. 121, 49–53 (2018)

    Article  CAS  Google Scholar 

  48. M.I. Mohammed, S.S. Fouad, N. Mehta, Dielectric relaxation and thermally activated a.c. conduction in (PVDF)/(rGO) nano-composites: role of rGO over different fillers. J. Mater. Sci.: Mater. Electron. 29, 18271–18281 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the department of solid-state physics in the Faculty of Science and Technology at the University of Debrecen for providing the preparation and structural characterization facilities. Also sincere thanks to the Physics department in the Faculty of Education at Ain Shams University for providing all the experimental facilities for the optical measurements, according to the agreement between the coordinator Prof. Suzan Fouad (Faculty of Education, Ain Shams University), and the coordinator Prof. Zoltán Erdélyi (Faculty of Science and Technology, Debrecen University) through the project number TKP2021-NKTA-34 has been implemented with the support provided by the National Research, Development, and Innovation Fund of Hungary, financed under the TKP2021-NKTA funding scheme.

Funding

This study was supported by National Research, Development, and Innovation Fund of Hungary (Grant No. TKP2021-NKTA-34).

Author information

Authors and Affiliations

Authors

Contributions

BP, EB, and ZE synthesized thin-film samples and contributed to the formal analysis. SSF and HEA produced experimental data. NM contributed to the conceptualization and writing of the original draft, review and editing. SKP performed data analysis and plotted graphs.

Corresponding author

Correspondence to Neeraj Mehta.

Ethics declarations

Conflict of interest

The present work has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, N., Fouad, S.S., Baradács, E. et al. Multilayer stack structural designing of titania and zinc white using atomic layer deposition (ALD) technique and study of thermally governed dielectric dispersion and conduction under alternating electric fields. J Mater Sci: Mater Electron 34, 708 (2023). https://doi.org/10.1007/s10854-023-10068-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10068-8

Navigation