Skip to main content
Log in

Synthesis and investigation on the structural, optical, and electrical proprieties of Nd0.5Ce0.5CoO3 prepared using sol–gel route for various application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The sol gel process was used to elaborate nanoparticles with the formula Nd0.5Ce0.5CoO3 sintered at 850 °C. X-ray diffraction (XRD) was employed to study the phase of our compound as well as the average particle size. Our sample has an orthorhombic structure with the Pnma space group. Furthermore, impedance spectroscopy was used to characterize the electrical and dielectric properties as a function of frequency temperature. The material produced exhibits semiconducting behavior and its electrical conductivity obeys the Jonscher’s power law and the conduction mechanism between neighboring sites follows the concept of “non-overlapping small polaron tunnelling” (NSPT). The Maxwell–Wagner theory of interfacial polarization was used to analyze the measures of dielectric constants like loss coefficient and permittivity. With increasing temperature, the Nyquist plots (Z′′ vs. Z′) reveal that the effect of grain boundaries govern the transport mechanism for the Nd0.5Ce0.5CoO3 combination. We employed the UV–Vis absorption spectroscopy method to examine the optical characteristics of this ceramic. The analysis of the diffused reflectance curves (DRS) indicate that the prepared sample has a good optical absorption behavior in the UV region. Using (DRS) data and with the help of Kubelka–Munk formula, we determined the direct band gap energy Eg = 2.87 eV of the treated system. On the other hand, the reflectance values were used to calculate the Urbach energy, the optical extinction coefficient and the refractive index. We also proved that the refractive index n follows Cauchy’s law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

Upon a reasonable request, the data that support this study's findings are available from the corresponding author.

References

  1. J. Khelifi, E. Dhahri, E.K. Hlil, Correlation between magnetic and electrical properties of La0.6Sr0.4Mn0.9V0.1O3 based on critical behavior. J. Phase Transit. 12, 1246–1255 (2018)

    Article  Google Scholar 

  2. M. Nasri, J. Khelif, H.A. Robei, E. Dhahri, M.L. Bouazizi, The impact of disorder on the disappearance of metamagnetic behavior and enhancement of temperature coefficient of resistivity for (La1−xNdx)2/3(Ca1−ySry)1/3MnO3 CERAMICS. J. Low Temp. Phys. 202, 175–184 (2021)

    Article  CAS  Google Scholar 

  3. Carrera-Figueiras, C.; Pérez-Padilla, Y.; Estrella-Gutiérrez, M.A.; Uc-Cayetano, E.G., Juárez-Moreno, J.A.; Avila-Ortega, A. Surface Science Engineering through Sol-Gel Process. In Applied Surface Science; IntechOpen: London, UK, 2019.

  4. L.L. Hench, Bioceramics: from concept to clinic. J. Am. Ceram. Soc. 74, 1487–1510 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb07132.X

    Article  CAS  Google Scholar 

  5. J.R. Jones, Review of bioactive glass: from hench to hybrids. Acta Biomater. 9, 4457–4486 (2013). https://doi.org/10.1016/j.actbio.2012.08.023

    Article  CAS  Google Scholar 

  6. F. Bollino, E. Armenia, E. Tranquillo, Zirconia/hydroxyapatite composites synthesized via sol-gel: influence of hydroxyapatite content and heating on their biological properties. Materials 10, 757 (2017). https://doi.org/10.3390/ma10070757

    Article  CAS  Google Scholar 

  7. R.A. Martin, S. Yue, J.V. Hanna, P.D. Lee, R.J. Newport, M.E. Smith, J.R. Jones, Characterizing the hierarchical structures of bioactive sol-gel silicate glass and hybrid scaffolds for bone regeneration. Philos. Trans. R Soc. A Math. Phys. Eng. Sci. 370, 1422–1443 (2012). https://doi.org/10.1098/rsta.2011.0308

    Article  CAS  Google Scholar 

  8. A. Maignan, C. Martin, K. Singh, C. Simon, O.I. Lebedev, S. Turner, J. Solid State Chem. 195, 41 (2012)

    Article  CAS  Google Scholar 

  9. K. Dey, A. Indra, S. Majumdar, S. Giri, J. Magn. Magn. Mater. 435, 15 (2017)

    Article  CAS  Google Scholar 

  10. G. Thennarasu, A. Sivasamy, J. Chem. Technol. Biotechnol. 90, 514 (2015)

    Article  CAS  Google Scholar 

  11. M. Younis, M. Saleem, S. Atiq, S. Naseem, Ceram. Int. 44, 10229 (2018)

    Article  CAS  Google Scholar 

  12. M.A. Kassem, A.A. El-Fadl, A.M. Nashaat, H. Nakamura, J. Alloys Compd. 790, 853 (2019)

    Article  CAS  Google Scholar 

  13. M. Imad, A. Fujimori, Y. Tokura, Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998)

    Article  Google Scholar 

  14. E. Ebtesam, M. Ateia, M. Arman, M. Morsy, Synthesis, characterization of NdCoO3 perovskite and its uses as humidity sensor. Appl. Phys. A (2019). https://doi.org/10.1007/s00339-019-3168-6

    Article  Google Scholar 

  15. M. Karim Souifi, S.H. Nasri, B. Alzahrani, M.L. Bouazizi, E. Dhahri, E.K. Hlil, J. Khelifi, J. Mater. Sci.: Mater. Electron. 32(11), 15291–15306 (2021)

    Google Scholar 

  16. M.A.S. Rodriguez, J.B. Goodenough, Magnetic and transport properties of the system La1-xSrxCoO3-δ (0 < x ≤ 0.50). J. Solid. State Chem. 118, 323 (1995)

  17. M.M. Abutalib, A. Rajeh, Influence of ZnO/Ag nanoparticles doping on the structural, thermal, optical, and electrical properties of PAM/PEO composite. Phys. B: Condensed Matter 578(1), 411796 (2020)

    Article  CAS  Google Scholar 

  18. J. Wang, B. Wang, Z. Wang, L. Chen, C. Gao, B. Xu, Z. Jia, G. Wu, J. Colloid Inter. Sci. 586, 479–490 (2021)

    Article  CAS  Google Scholar 

  19. O. BenMya, L. dosSantos-Gómez, J.M. Porras-Vázquez, M. Omari, D. Marrero-López, La1−xSrxFe0.7Ni0.3O3−δ as both cathode and anode materials for solid oxide fuel cells. J. Hydrogen Energy 42, 23160–23169 (2017)

    Article  CAS  Google Scholar 

  20. Ebtesam E. Ateia, M. M. Arman, M. Morsy. Applied Physics A (2019) 125:883

  21. V. Goldschmidt. Geochemistry.OxfordUniversity press, (1958).

  22. P. Scherrer, Nachr. Ges.Wiss. Göttingen 98(1994).

  23. D. Kostyukova, Y.H. Chung, Synthesis of iron oxide nanoparticles using isobutanol. J. Magnet. Magnet. Mater. 409, 116–123 (2016)

    Google Scholar 

  24. D. Kumar, A.K. Singh, Investigation of structural and magnetic properties ofNd0.7Ba0.3Mn1-xTixO3 (x = 0.05, 0.15 and 0.25) manganites synthesized through a single-step process. J. Magn. Magn. Magn. 469, 264–273 (2019)

    Article  CAS  Google Scholar 

  25. A.P. Sazonov, I.O. Troyanchuk, V.V. Sikolenko, G.M. Chobot, H. Szymczak, Crystal structure, magnetic and electrical properties of the Nd1-xBaxCoO3 system. J. Phys.: Condens Matter 17, 4181–4195 (2005)

    CAS  Google Scholar 

  26. D. Kumar, N.K. Verma, C.B. Singh, A.K. Singh, Crystallite size strain analysis of nanocrystalline La0.7Sr0.3MnO3 perovskite by Williamson-Hall plot method. AIP Conf. Proc. 1942, 050024–050034 (2018)

    Article  CAS  Google Scholar 

  27. O. Rejaiba, F. Hcini, M. Nasri, B. Alzahrani, M.L. Bouazizi, E.K. Hlil, J. Khelifi, K. Khirouni, E. Dhahri, Structural, dielectric and electrical properties of Sol–gel auto combustion technic of CuFeCr0.5Ni0.5O4 ferrite. J. Mater. Sci. 56, 16044 (2021)

    Article  CAS  Google Scholar 

  28. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Article  CAS  Google Scholar 

  29. R. Hamdi, J. Khelifi, I. Walha, W. Hzez, E. Dhahri, Structural and dielectric properties of La0.5Pr0.2Ba0.3Mn1-xTixO3 (x = 0.0 and 0.1) manganite. J. Low Temp. Phys. 203, 158 (2021)

    Article  CAS  Google Scholar 

  30. A.B.J. Kharrat, N. Moutia, K. Khirouni, W. Boujelben, Investigation of electrical behavior and dielectric properties in polycristalline Pr0.8Sr0.2MnO3 manganite perovskite. J. Mater. Res. Bull. 105, 75 (2018)

    Article  Google Scholar 

  31. J. Fan, Y. Xie, Y.E. Yang, C. Kan, L. Ling, W. Tong, C. Wang, C. Ma, W. Sun, Y. Zhu, H. Yang, Robust electronic phase separation on nanoscale of perovskite manganite La0.825 Sr0.175 MnO3. J. Ceram. Int. 45, 9179 (2019)

    Article  CAS  Google Scholar 

  32. M. Shah, M. Nadeem, M. Idrees, M. Atif, M.J. Akhtar, Change of conduction mechanism in the impedance of grain boundaries in Pr0.4Ca0.6MnO3. J. Magn. Magn. Mater. 332, 61 (2013)

    Article  CAS  Google Scholar 

  33. A. Selmi, S. Hcini, H. Rahmouni, A. Omri, M.L. Bouazizi, A. Dhahri, Synthesis, structural and complex impedance spectroscopy studies of Ni0.4Co0.4Mg0.2Fe2O4 spinel ferrite. J. Phase Transit. 90, 942 (2017)

    Article  CAS  Google Scholar 

  34. M. Nadeem, M.J. Akhtar, A.Y. Khan, R. Shaheen, M.N. Hoque, Chem. J. Phys. Lett. 366, 433 (2002)

    Article  CAS  Google Scholar 

  35. Johnson D. ZView: a software program for IES analysis. Version 2.8. Southern Pines, NC: Scribner Associates, Inc.; 2008.

  36. M.K. Fayek, S.S. Ata-Allah, H.S. Refai, J. Appl. Phys. 85, 325 (1999)

    Article  CAS  Google Scholar 

  37. M.A. Ahmed, A.A. EL-Khawlani, J. Magn. Magn. Mater. 321 (2009) 1959.

  38. F. Hcini, S. Hcini, B. Alzahrani, S. Zemni, M.L. Bouazizi, Appl. Phys. A 126, 362 (2020)

    Article  CAS  Google Scholar 

  39. M. Hsini, N. Hamdaoui, S. Hcini, M.L. Bouazizi, S. Zemni, L. Beji, Phase Transit. 91, 316 (2018)

    Article  CAS  Google Scholar 

  40. R. Mguedla, A.B.J. Kharrat, N. Moutia, K. Khirouni, NCh. Boudjada, W. Boujelben, Gd doping effect on structural, electrical and dielectric properties in HoCrO3 orthochromites for electric applications. J. Alloys Compd. 836, 155186 (2020)

    Article  CAS  Google Scholar 

  41. M.R. Bhandare, H.V. Jamadar, A.T. Pathan, B.K. Chougule, A.M. Shaikh, Dielectric properties of Cu substituted Ni0.5-xZn0.3Mg0.2Fe2O4 ferrites (x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5). J. Alloys Compd. 509, 113 (2011)

    Article  Google Scholar 

  42. A.K. Himanshu, B.K. Choudhary, S.N. Singh, D.C. Gupta, S.K. Bandyopadhayay, T.P. Sinha, Synthesis and dielectric relaxation studies of Ba substitution in Pb (Zn1/3Nb2/3)O3 ceramics by coprecipitation method. Sol. St. Sci. 12, 1231 (2010)

    Article  CAS  Google Scholar 

  43. O.V. Rambadey, A. Kumar, A. Sati, P.R. Sagdeo, Exploring the interrelation between urbach energy and dielectric constant in Hf-substituted BaTiO3. ACS Omega 6, 32231 (2021)

    Article  CAS  Google Scholar 

  44. R. Mguedla, A.B.J. Kharrat, O. Taktak, H. Souissi, S. Kammoun, K. Khirouni, W. Boujelben, Experimental and theoretical investigations on optical properties of multiferroic PrCrO3 ortho-chromite compound. Opt. Mater. 101, 109742 (2020)

    Article  CAS  Google Scholar 

  45. M. Arshad, W. Khan, M. Abushad, M. Nadeem, S. Husain, A. Ansari, V.K. Chakradhary, Correlation between structure, dielectric and multiferroic properties of lead free Ni modified BaTiO3 solid solution. J. Ceram. Int. 46, 27336 (2020)

    Article  CAS  Google Scholar 

  46. K.M.E. Miedzinska, B.R. Hollebone, J.G. Cook, An assigment of the optical absorption spectrum of mixed valence Co3O4 spinel films. J. Phys. Chem. Solids 48, 649–656 (1987)

    Article  CAS  Google Scholar 

  47. D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, E. Tondello, Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt(II) precursor by chemicalvapor deposition. Chem. Mater. 13, 588–593 (2001)

    Article  CAS  Google Scholar 

  48. M. Lenglet, C.K. Jørgensen, Reinvestigation of the optical properties of Co3O4. Chem. Phys. Lett. 229, 616–620 (1994)

    Article  CAS  Google Scholar 

  49. A. Gulino, P. Dapporto, P. Rossi, I. Fragalà, A novel self-generating liquid MOCVD precursor for Co3O4 thin films. Chem. Mater. 15, 3748–3752 (2003)

    Article  CAS  Google Scholar 

  50. O. Rejaiba, K. Khirouni, M.H. Dhaou, B. Alzahrani, M.L. Bouazizi, J. Khelifi, Investigation study of optical and dielectric parameters using absorption and diffuse reflectance spectroscopy method on La0.57Nd0.1Sr0.13Ag0.2MnO3 perovskite for optoelectronic application. J. Opt. Quantum Electron. 54, 315 (2022)

    Article  CAS  Google Scholar 

  51. R. Muhammad, M.A. Khalil, M.S. Castro, Structure and dielectric characteristics of Ba1-xCaxTi1-xCaxO3-δ ceramics. Ceram. Int. 46, 1059 (2020)

    Article  Google Scholar 

  52. S. Husain, A.O.A. Keelani, W. Khan, Influence of Mn substitution on morphological, thermal and optical properties of nanocrystalline GdFeO3 orthoferrite. J. Nano-Struct. Nano-Objects 15, 17 (2018)

    Article  CAS  Google Scholar 

  53. A.S. Hassanien, A.A. Akl, Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50−xSex thin films. J. Alloys Compd. 648, 280 (2015)

    Article  CAS  Google Scholar 

  54. R. Mguedla, A.B.J. Kharrat, S. Kammoun, K. Khirouni, W. Boujelben, Optical studies of multiferroic HoCrO3 perovskite compound for optoelectronic device applications. Opt. Mater. 119, 111311 (2021)

    Article  CAS  Google Scholar 

  55. L. Boudaoud, N. Benramdane, R. Desfeux, B. Khelifa, C. Mathieu, Structural and optical properties of MoO3 and V2O5 thin films prepared by Spray Pyrolysis. J. Catal. Today 113, 230 (2006)

    Article  CAS  Google Scholar 

  56. K. Kahouli, A.B.J. Kharrat, S. Chaabouni, Optical properties analysis of the new (C9H14N)3BiCl6 compound by UV–visible measurements. J. Indian. Phys. 95, 2797 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (IF2/PSAU/2022/01/22494).

Author information

Authors and Affiliations

Authors

Contributions

All authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, analysis, design, and writing. The final manuscript was read and approved by all authors.

Corresponding author

Correspondence to Mohamed Lamjed Bouazizi.

Ethics declarations

Conflict of interest

The authors have no competing interests that are relevant to the content of this article to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouazizi, M.L., Khelifi, J., Khirouni, K. et al. Synthesis and investigation on the structural, optical, and electrical proprieties of Nd0.5Ce0.5CoO3 prepared using sol–gel route for various application. J Mater Sci: Mater Electron 34, 630 (2023). https://doi.org/10.1007/s10854-023-10045-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10045-1

Navigation