Skip to main content
Log in

Preparation, characterization and properties of LnSmWO\(_{6}\) (Ln = Nd and Dy) nanofunctional ceramics

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Isovalent substitution of lanthanide ions in \(\hbox {Ln}_{{2}}\hbox {WO}_{6 }\) (Ln = lanthanides) nanoceramics can probe into multifunctional applications due to their unique structural and electronic properties. In this work \(\hbox {Sm}^{3+}\) ions in the \(\hbox {Sm}_{{2}}\hbox {WO}_{{6}}\) nanoceramics were partially replaced with \(\hbox {Nd}^{3+}\) and \(\hbox {Dy}^{3+}\) ions and their structural, optical and ionic transport properties were studied. The size and structure of the nanocrystalline \(\hbox {LnSmWO}_{{6}}\) (Ln = Nd and Dy) compounds prepared through a combustion method were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and transmission electron microscopy (TEM). UV–Visible spectroscopy and photoluminescence spectroscopy were used for the investigation of optical and electronic properties of the nanoceramics. Bulk ceramics prepared from the nanoparticles achieved high-density during the sintering process and the surface morphology of the dense \(\hbox {NdSmWO}_{{6}}\) was imaged using scanning electron microscopy. The electrical properties of the dense ceramics were analysed using impedance spectroscopy. XRD analysis carried out on the prepared materials showed a single-phase monoclinic structure for the nanoceramics. A combined analysis of FTIR and Raman studies showed the presence of Ln–O and O–W–O vibrations, which confirm the monoclinic structure. Particulate properties investigated through the TEM imaging showed that the prepared materials are polycrystalline aggregates. Optical studies carried out on the nanoparticles showed absorption in the UV region and emission in the visible region. Impedance spectroscopic studies conducted on bulk ceramics imply that these are good oxide ion conductors at high-temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Allix M, Chambrier M-H, Véron E, Porcher F, Suchomel M and Goutenoire F 2011 Cryst. Growth Des. 11 5105

    Article  CAS  Google Scholar 

  2. Alonso J A, Rivillas F, Martínez-Lope M J and Pomjakushin V 2004 J. Solid State Chem. 177 2470

    Article  CAS  Google Scholar 

  3. Brixner L H, Sleight A W and Licis M S 1972 J. Solid State Chem. 5 186

    Article  CAS  Google Scholar 

  4. Chambrier M H, Kodjikian S, Ibberson R M and Goutenoire F 2009 J. Solid State Chem. 182 209

    Article  CAS  Google Scholar 

  5. Wang L-L, Wang Q-L, Xu X, Li J, Gao L, Kang W et al 2013 J. Mater. Chem. C 1 8033

    Article  CAS  Google Scholar 

  6. Zhang Y, Ding B, Yin L, Xin J, Zhao R, Zheng S et al 2018 Inorg. Chem. 57 507

    Article  CAS  Google Scholar 

  7. Ding B, Qian H, Han C, Zhang J, Lindquist S E, Wei B et al 2014 J. Phys. Chem. C 118 25633

    Article  CAS  Google Scholar 

  8. Blasse G and Bril A 1966 J. Chem. Phys. 45 2350

    Article  CAS  Google Scholar 

  9. Brixner L H, Sleight A W and Foris C M 1973 J. Solid State Chem. 7 418

    Article  CAS  Google Scholar 

  10. Mikhailik V B, Kraus H, Miller G, Mykhaylyk M S and Wahl D 2005 J. Appl. Phys. 97 083523

    Article  Google Scholar 

  11. Zhang Y, Zheng A, Yang X, He H and Fan Y 2012 Mater. Res. Bull. 47 2364

    Article  CAS  Google Scholar 

  12. Lei F, Yan B and Chen H H 2008 J. Solid State Chem. 181 2845

    Article  CAS  Google Scholar 

  13. Abraham Y, Holzwarth N A W and Williams R T 2000 Phys. Rev. B 62 1733

    Article  CAS  Google Scholar 

  14. Chance W M, Smith M D and Zur Loye H C 2014 J. Chem. Crystallogr. 44 20

    Article  CAS  Google Scholar 

  15. Guo L, Zhang Y, Zhao X, Wang C and Ye F 2016 Ceram. Int. 42 583

    Article  CAS  Google Scholar 

  16. Ye S, Yu D-C, Wang X-M, Song E-H and Zhang Q-Y 2013 J. Mater. Chem. C 1 1588

    Article  CAS  Google Scholar 

  17. Borchardt H J 1963 J. Chem. Phys. 39 504

    Article  CAS  Google Scholar 

  18. Chen J, Fang L, Xiang H and Li C 2018 Mater. Chem. Phys. 206 110

    Article  CAS  Google Scholar 

  19. Chen Y-C and Weng M-Z 2016 J. Ceram. Soc. Japan 124 98

    Article  CAS  Google Scholar 

  20. Groń T, Tomaszewicz E, Urbanowicz P, Duda H and Mydlarz T 2011 ACTA Phys. Pol. A 119 708

    Article  Google Scholar 

  21. Urbanowicz P, Tomaszewicz E, Groń T, Duda H, Pacyna A W and Mydlarz T 2009 Physica B: Condens. Matter 404 2213

    Article  CAS  Google Scholar 

  22. Hasab M G, Ebrahimi S A S and Badiei A 2007 J. Non. Cryst. Solids 353 814

    Article  CAS  Google Scholar 

  23. Tyagi A K 2007 Barc. News Lett. 39

  24. Bode J H G, Kuijt H R, Lahey M A J T and Blasse G 1973 J. Solid State Chem. 8 114

    Article  CAS  Google Scholar 

  25. Subbalakshmi P and Veeraiah N 2002 J. Non. Cryst. Solids 298 89

    Article  CAS  Google Scholar 

  26. Sone B T, Manikandan E, Gurib-Fakim A and Maaza M 2015 J. Alloys Compd. 650 357

    Article  CAS  Google Scholar 

  27. Chandrasekhar M, Nagabhushana H, Sudheerkumar K H, Dhananjaya N, Sharma S C, Kavyashree D et al 2014 Mater. Res. Bull. 55 237

    Article  CAS  Google Scholar 

  28. Moo L, La L, Velchuri R, Palla S, Ravi G, Veldurthi N K et al 2015 J. Rare Earths 33 837

    Article  Google Scholar 

  29. Bai S, Zhang K, Wang L, Sun J, Luo R, Li D et al 2014 J. Mater. Chem. A 2 7927

    Article  CAS  Google Scholar 

  30. McDevitt N T, Davidson A D, Branch A, Force A, Division T, Davison A D et al 1966 J. Opt. Soc. Am. 56 636

    Article  Google Scholar 

  31. Kumar R, Prasad D and Brahme N 2014 J. Radiat. Res. Appl. Sci. 7 550

    Article  Google Scholar 

  32. Aghazadeh M and Yousefi T 2012 Mater. Lett. 73 176

    Article  CAS  Google Scholar 

  33. Vinoth Kumar J, Karthik R, Chen S-M, Natarajan K, Karuppiah C, Yang C-C et al 2018 ACS Appl. Mater. Interfaces 10 15652

    Article  CAS  Google Scholar 

  34. Lei F, Yan B, Chen H H and Zhao J T 2009 J. Am. Ceram. Soc. 92 1262

    Article  CAS  Google Scholar 

  35. Tsaryuk V and Zolin V 2001 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 57 355

    Article  CAS  Google Scholar 

  36. Akbari B, Tavandashti M P and Zandrahimi M 2011 Iran. J. Mater. Sci. Eng. 8 48

    CAS  Google Scholar 

  37. Yaru N, Chunhua L, Yan Z, Qitu Z and Zhongzi X 2007 J. Rare Earths 25 94

    Article  Google Scholar 

  38. Assefa Z, Haire R and Raison P 2004 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 60 89

    Article  Google Scholar 

  39. Devaraja P B, Avadhani D N, Nagabhushana H, Prashantha S C, Sharma S C and Nagabhushana B M 2014 Mater. Charact. 97 27

    Article  CAS  Google Scholar 

  40. Emeline A, Kataeva G V, Litke A S, Rudakova A V, Ryabchuk V K and Serpone N 1998 Langmuir 14 5011

    Article  CAS  Google Scholar 

  41. Zaman F, Kaewkhao J, Rooh G, Srisittipokakun N and Kim H J 2016 J. Alloys Compd. 676 275

    Article  CAS  Google Scholar 

  42. Yu T, Sun J, Hua R, Cheng L, Zhong H, Li X et al 2011 J. Alloys Compd. 509 391

    Article  CAS  Google Scholar 

  43. Xiao Q, Zhou Q and Li M 2010 J. Lumin. 130 1092

    Article  CAS  Google Scholar 

  44. Meng F, Zhang X, Li H and Seo H J 2012 J. Rare Earths 30 866

    Article  CAS  Google Scholar 

  45. Prasanna Kumar J B, Ramgopal G, Vidya Y S, Anantharaju K S, Daruka Prasad B, Sharma S C et al 2015 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 149 687

    Article  CAS  Google Scholar 

  46. Lakshminarasappa B N, Prashantha S C and Singh F 2011 Curr. Appl. Phys. 11 1274

    Article  Google Scholar 

  47. Suresh S 2013 J. Cryst. Process Technol. 3 87

    Article  Google Scholar 

  48. Rodewald S, Fleig J and Maier J 2001 J. Am. Ceram. Soc. 84 521

    Article  CAS  Google Scholar 

  49. Li Q and Thangadurai V 2011 J. Power Sources 196 169

    Article  CAS  Google Scholar 

  50. Belous A and Kravchyk K 2007 Chem. Mater. 19 5179

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Kerala State Council for Science, Technology and Environment, Government of Kerala for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Solomon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayalekshmy, N.L., Thomas, J.K. & Solomon, S. Preparation, characterization and properties of LnSmWO\(_{6}\) (Ln = Nd and Dy) nanofunctional ceramics. Bull Mater Sci 42, 178 (2019). https://doi.org/10.1007/s12034-019-1887-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1887-0

Keywords

Navigation