Skip to main content

Advertisement

Log in

Improved energy storage performance of P (VDF-TrFE-CFE) films by growing superficial AlN insulation Layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ferroelectric polymers, such as PVDF and its copolymers, have attracted much attention because of their high dielectric constants, which exhibit great potential for use as capacitive films. However, serious polarization loss and conduction loss at high electric fields limit their wider application. In this study, magnetron sputtering was used to grow AlN insulation layer on the surfaces of P(VDF-TrFE-CFE) (PVTC) ferroelectric films. The microstructure of AlN/PVTC/AlN films, abbreviated as APA, and the effects of the AlN layer on the dielectric and energy storage properties were systematically studied. The results demonstrate that the growth of the AlN insulation layer can suppress electric charge injection and improve the insulation properties compared with those of pristine PVTC films. APA films with a 150 nm AlN layer possess a superior electric breakdown strength of 544.1 kV/mm and a reduced leakage current density. In particular, a decrease in the conduction/polarization loss and an increase in the dielectric constant were obtained in the APA-150 nm composite films. An energy storage density of 15.87 J/cm3 and an efficiency of 55% were obtained at an electric field of 540 kV/mm, which is superior to those of pristine PVTC films. The results indicate that depositing a superficial insulation layer on dielectric films may be a good way to improve energy storage properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Z. Wang, T. Wang, C. Wang, Y.J. Xiao, P.P. Jing, Y.F. Cui, Y.P. Pu, ACS Appl. Mater. Interfaces 9, 29130–29139 (2017)

    Article  CAS  Google Scholar 

  2. T.D. Huan, S. Boggs, G. Teyssedre, C. Laurent, M. Cakmak, S. Kumar, R. Ramprasad, Prog Mater. Sci. 83, 236–269 (2016)

    Article  CAS  Google Scholar 

  3. Q. Li, Q. Wang, Macromol. Chem. Phys. 217, 1228–1244 (2016)

    Article  CAS  Google Scholar 

  4. J. Ho, R. Ramprasad, S. Boggs, IEEE T. Dielect. El. In. 14, 1295–1301 (2007)

    Article  CAS  Google Scholar 

  5. X.M. Zhang, Y.F. Zhao, Y.H. Wu, Z.C. Zhang, Polymer 114, 311–318 (2017)

    Article  CAS  Google Scholar 

  6. J.Y. Pei, S.L. Zhong, Y. Zhao, L.J. Yin, Q.K. Feng, L. Huang, D.F. Liu, Y.X. Zhang, Z.M. Dang, Energy Environ. Sci. 14, 5513–5522 (2021)

    Article  CAS  Google Scholar 

  7. Q.Z. Sun, P. Mao, L.X. Zhang, J.P. Wang, Y.Y. Zhao, F. Kang, Ceram. Int. 46, 9990–9996 (2020)

    Article  CAS  Google Scholar 

  8. J. Wang, Z. Li, Y. Yan, X. Wang, Y.C. Xie, Z.C. Zhang, Chin. J. Polym. Sci. 34, 649–658 (2016)

    Article  CAS  Google Scholar 

  9. X.T. Ren, N. Meng, H. Zhang, J.Y. Wu, I. Abrahams, H.X. Yan, E. Bilotti, M.J. Reece, Nano Energy 72, 104662 (2020)

  10. P. Mao, J.P. Wang, L.X. Zhang, Q.Z. Sun, X.X. Liu, L.Q. He, S.J. Liu, S.W. Zhang, H. Gong, Phys. Chem. Chem. Phys. 22, 13143–13153 (2020)

    Article  CAS  Google Scholar 

  11. Q.G. Chi, Y.H. Zhou, C. Yin, Y. Zhang, C.H. Zhang, T.D. Zhang, Y. Feng, Y.Q. Zhang, Q.G. Chen, J. Mater. Chem. C 7, 14148–14158 (2019)

    Article  CAS  Google Scholar 

  12. X. Zhang, Y. Shen, Q.H. Zhang, L. Gu, Y.H. Hu, J.W. Du, Y.H. Lin, C.W. Nan, Adv. Mater. 27, 819–824 (2015)

    Article  CAS  Google Scholar 

  13. S. Cheng, Y. Zhou, Y.S. Li, C. Yuan, M.C. Yang, J. Fu, J. Hu, J.L. He, Q. Li, Energy Stor. Mater. 42, 445–453 (2021)

    Google Scholar 

  14. A. Azizi, M.R. Gadinski, Q. Li, M. Abu, J.J. AlSaud, Y. Wang, B. Wang, F.H. Wang, L.Q. Liu, N. Chen, Q. Wang. Alem, Adv. Mater. 29, 1701864 (2017)

    Article  Google Scholar 

  15. T.D. Zhang, L.Y. Yang, J.Y. Ruan, C.H. Zhang, Q.G. Chi, Macromol. Mater. Eng 306, (2021)

  16. P. Martins, A.C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683–706 (2014)

    Article  CAS  Google Scholar 

  17. S. Bhattacharjee, N. Mazumder, S. Mondal, K. Panigrahi, A. Banerjee, D. Das, S. Sarkar, D. Roy, K.K. Chattopadhyay, Dalton Trans. 49, 7872–7890 (2020)

    Article  CAS  Google Scholar 

  18. J.L. Qi, L.P. Wang, Y. Zhang, X. Guo, W.Q. Yu, Q.H. Wang, K. Zhang, P. Ren, M.Wen, Surf. Coat. Tech 405, (2021)

  19. B.C. Luo, X.H. Wang, Y.P. Wang, L.T. Li, J. Mater. Chem. A 2, 510–519 (2014)

    Article  CAS  Google Scholar 

  20. R. Imamura, A.B. Silva, R. Gregorio Jr., J. Appl. Polym. Sci. 110, 3242–3246 (2008)

    Article  CAS  Google Scholar 

  21. C. Chen, J.W. Xing, Y. Cui, C.H. Zhang, Y. Feng, Y.Q. Zhang, T.D. Zhang, Q.G. Chi, X. Wang, Q.Q. Lei, J. Phys. Chem. C 124, 5920–5927 (2020)

  22. W.J. Li, Q.J. Meng, Y.S. Zheng, Z.C. Zhang, W.M. Xia, Z. Xu, Appl. Phys. Lett. (2010). https://doi.org/10.1063/13428656

    Article  Google Scholar 

  23. R. Gregorio, J. Appl. Polym. Sci. 100, 3272–3279 (2006)

    Article  CAS  Google Scholar 

  24. N. Sinha, G.E. Wabiszewski, R. Mahameed, V.V. Felmetsger, S.M. Tanner, R.W. Carpick, G. Piazza, Appl. Phys. Lett. 95, 053106 (2009)

  25. V.K. Prateek, R.K. Thakur, Gupta, Chem. Rev. 116, 4260–4317 (2016)

    Article  CAS  Google Scholar 

  26. T. Wang, R.C. Peng, W.J. Peng, G.H. Dong, C. Zhou, S. Yang, Z.Y. Zhou, M. Liu, Adv. Funct. Mater 32, (2021)

  27. S. Bhattacharjee, S. Mondal, A. Banerjee, K.K. Chattopadhyay, Mater. Res. Express 7, 044001 (2020)

    Article  CAS  Google Scholar 

  28. T.D. Zhang, L.Y. Yang, C.H. Zhang, Y. Feng, J. Wang, Z.H. Shen, Q.G. Chen, Q.Q. Lei, Q.G. Chi, Mater. Horiz 9, 1273–1282 (2022)

    Article  CAS  Google Scholar 

  29. J.F. Dong, R.C. Hu, X.W. Xu, J. Chen, Y.J. Niu, F. Wang, J.Y. Hao, K. Wu, Q. Wang, H. Wang, Adv. Funct. Mater. 31, 2102644 (2021)

    Article  CAS  Google Scholar 

  30. F. Jose, R. Ramaseshan, S. Dash, S. Bera, A.K. Tyagi, B. Raj, J. Phys. D. Appl. Phys. 43, 075304 (2010)

  31. D. Singh, A. Deepak, Garg, Phys. Chem. Chem. Phys. 19, 7743–7750 (2017)

    Article  CAS  Google Scholar 

  32. Y. Zhang, C.H. Zhang, Y. Feng, T.D. Zhang, Q.G. Chen, Q.G. Chi, L.Z. Liu, G.F. Li, Y. Cui, X. Wang, Z.M. Dang, Q.Q. Lei, Nano Energy (2019). https://doi.org/10.1016/j.compositesb.2019.107429

    Article  Google Scholar 

  33. J.Y. Jiang, X. Zhang, Z.K. Dan, J. Ma, Y.H. Lin, M. Li, C.W. Nan, Y. Shen, ACS Appl. Mater. Inter. 9, 29717–29731 (2017)

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. U20A20308, 51977050, 52277024), Heilongjiang Provincial Natural Science Foundation of China (No. ZD2020E009), China Postdoctoral Science Foundation (Nos. 2021T140166, 2018M640303), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang (No. UNPYSCT-2020178).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was performed by Tiandong Zhang and Qingguo Chi. Methodology, preparation, and investigation were performed by Peng Liu. Data analysis was performed by Changhai Zhang and Yongquan Zhang. Peng Liu and Tiandong Zhang were contributed in writing original draft. Reviewing, and editing were performed by Yu Feng and Yue Zhang.

Corresponding authors

Correspondence to Tiandong Zhang or Qingguo Chi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4721.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Zhang, T., Zhang, C. et al. Improved energy storage performance of P (VDF-TrFE-CFE) films by growing superficial AlN insulation Layer. J Mater Sci: Mater Electron 34, 614 (2023). https://doi.org/10.1007/s10854-023-10031-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10031-7

Navigation