Skip to main content

Advertisement

Log in

MnCo2O4@Co(OH)2-g-C3N4 preparation of composite materials and their performance in supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High performance electrochemical energy storage device is an important means to solve the energy problem. As one of the next generation energy storage components, supercapacitor has received more and more attention in recent years. In this work, we synthesized a self-supporting MnCo2O4@Co(OH)2 core–shell heterostructure (CSHs), this can not only enhance the strength of the material, but also generate abundant electron transport pathways. In addition, we also added flaky carbon nitride (g-C3N4) after treatment with nitric acid (HNO3) to improve the cycle stability and specific capacitance of the material. By adjusting the chemical bath (CBD) time, the loading amount of Co(OH)2 nanosheets can be controlled, giving full play to the synergy between the materials, so that the prepared composite has greater specific capacitance, higher rate performance and better cycle stability. When the current density is 0.5 A·g−1, the specific capacitance of the composite is about 1932 F·g−1. In the two electrode system, the energy density is 23.2 Wh·kg−1 at a power density of 600 W·kg−1. At a high current density of 10 A·g−1, after 10,000 cycles, the initial capacitance of the composite material maintained 83.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, B. Dunn, P. Simon, Efficient storage mechanisms for building better supercapacitors. Nat. Energy (2016). https://doi.org/10.1038/nenergy.2016.70

    Article  Google Scholar 

  2. F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 46(22), 6816–6854 (2017)

    Article  CAS  Google Scholar 

  3. P.-W. Xiao, Q. Meng, L. Zhao, J.-J. Li, Z. Wei, B.-H. Han, Biomass-derived flexible porous carbon materials and their applications in supercapacitor and gas adsorption. Mater. Des. 129, 164–172 (2017)

    Article  CAS  Google Scholar 

  4. W. Raza, F. Ali, N. Raza, Y. Luo, K.-H. Kim, J. Yang, S. Kumar, A. Mehmood, E.E. Kwon, Recent advancements in supercapacitor technology. Nano Energy 52, 441–473 (2018)

    Article  CAS  Google Scholar 

  5. X. Hu, L. Wei, R. Chen, Q. Wu, J. Li, Reviews and prospectives of Co3O4-based nanomaterials for supercapacitor application. ChemistrySelect 5(17), 5268–5288 (2020)

    Article  CAS  Google Scholar 

  6. J. Pang, H. Fu, W. Kong, R. Jiang, J. Ye, Z. Zhao, J. Hou, K. Sun, Y. Zheng, L. Chen, Design of NiCo2O4 nanoparticles decorated N, S co-doped reduced graphene oxide composites for electrochemical simultaneous detection of trace multiple heavy metal ions and hydrogen evolution reaction. Chem. Eng. J. 433, 133854 (2022)

    Article  CAS  Google Scholar 

  7. J.M. Gonçalves, M.N.T. Silva, K.K. Naik, P.R. Martins, D.P. Rocha, E. Nossol, R.A.A. Munoz, L. Angnes, C.S. Rout, Multifunctional spinel MnCo2O4 based materials for energy storage and conversion: a review on emerging trends, recent developments and future perspectives. J. Mater. Chem. A 9(6), 3095–3124 (2021)

    Article  Google Scholar 

  8. X.B. Joseph, N.M. Umesh, S.-F. Wang, J.A. Jesila, CoFe2O4 supported g-C3N4 nanocomposite for the sensitive electrochemical detection of dopamine. New J. Chem. 45(38), 18131–18138 (2021)

    Article  CAS  Google Scholar 

  9. J. Pang, K. Sun, S. Jin, J. Hou, G. Wang, K. Sun, Y. Zheng, Y. Zhang, L. Chen, Oxygen vacancies enriched multi-channel-like metal-doped Co3O4 nanosheets by Lewis acid etching for detection of small biological molecules in apple juice and wine. Chem. Eng. J. 454, 140085 (2023)

    Article  CAS  Google Scholar 

  10. K. Sun, Y. Shen, J. Min, J. Pang, Y. Zheng, T. Gu, G. Wang, L. Chen, MOF-derived Zn/Co co-doped MnO/C microspheres as cathode and Ti3C2@Zn as anode for aqueous zinc-ion full battery. Chem. Eng. J. 454, 140394 (2023)

    Article  CAS  Google Scholar 

  11. H. Che, Y. Wang, Y. Mao, Novel flower-like MnCo2O4 microstructure self-assembled by ultrathin nanoflakes on the microspheres for high-performance supercapacitors. J. Alloy. Compd. 680, 586–594 (2016)

    Article  CAS  Google Scholar 

  12. L. Li, Y.Q. Zhang, X.Y. Liu, S.J. Shi, X.Y. Zhao, H. Zhang, X. Ge, G.F. Cai, C.D. Gu, X.L. Wang, J.P. Tu, One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage. Electrochim. Acta 116, 467–474 (2014)

    Article  CAS  Google Scholar 

  13. B. Saravanakumar, G. Ravi, V. Ganesh, R.K. Guduru, R. Yuvakkumar, MnCo2O4 nanosphere synthesis for electrochemical applications. Mater. Sci. Energy Technol. 2(1), 130–138 (2019)

    Google Scholar 

  14. J. Xu, Y. Sun, M. Lu, L. Wang, J. Zhang, E. Tao, J. Qian, X. Liu, Fabrication of the porous MnCo2O4 nanorod arrays on Ni foam as an advanced electrode for asymmetric supercapacitors. Acta Mater. 152, 162–174 (2018)

    Article  CAS  Google Scholar 

  15. T. Pettong, P. Iamprasertkun, A. Krittayavathananon, P. Sukha, P. Sirisinudomkit, A. Seubsai, M. Chareonpanich, P. Kongkachuichay, J. Limtrakul, M. Sawangphruk, High-performance asymmetric supercapacitors of MnCo2O4 nanofibers and N-doped reduced graphene oxide aerogel. ACS Appl Mater Interfaces 8(49), 34045–34053 (2016)

    Article  CAS  Google Scholar 

  16. L. Xie, P. Zhu, J. Xu, M. Duan, S. Zhang, X. Wu, Highly efficient Bi4Ti3O12/g-C3N4/BiOBr dual Z-scheme heterojunction photocatalysts with enhanced visible light-responsive activity for the degradation of antibiotics. Langmuir 38(31), 9532–9545 (2022)

    Article  CAS  Google Scholar 

  17. H. Ou, L. Lin, Y. Zheng, P. Yang, Y. Fang, X. Wang, Tri-s-triazine-based crystalline carbon nitride nanosheets for an improved hydrogen evolution. Adv Mater 29(22), 1700008 (2017)

    Article  Google Scholar 

  18. M. Akhtar, S. Rafiq, M.F. Warsi, S.M. El-Bahy, M.M. Hessien, G.A.M. Mersal, M.M. Ibrahim, M. Shahid, Hierarchically porous NiO microspheres and their nanocomposites with exfoliated carbon as electrode materials for supercapacitor applications. J. Taibah Univ. Sci. 16(1), 575–584 (2022)

    Article  Google Scholar 

  19. S. Bag, A. Samanta, P. Bhunia, C.R. Raj, Rational functionalization of reduced graphene oxide with imidazolium-based ionic liquid for supercapacitor application. Int. J. Hydrogen Energy 41(47), 22134–22143 (2016)

    Article  CAS  Google Scholar 

  20. D. Mohanadas, N.H.N. Azman, J. Abdullah, N.A. Endot, Y. Sulaiman, Bifunctional ternary manganese oxide/vanadium oxide/reduced graphene oxide as electrochromic asymmetric supercapacitor. Ceram. Int. 47(24), 34529–34537 (2021)

    Article  CAS  Google Scholar 

  21. B. Sriram, J.N. Baby, Y.-F. Hsu, S.-F. Wang, X. Benadict Joseph, M. George, P. Veerakumar, K.C. Lin, MnCo2O4 microflowers anchored on P-doped g-C3N4 nanosheets as an electrocatalyst for voltammetric determination of the antibiotic drug sulfadiazine. ACS Appl. Electron. Mater. 3(9), 3915–3926 (2021)

    Article  CAS  Google Scholar 

  22. J. Jiang, J. Liu, R. Ding, J. Zhu, Y. Li, A. Hu, X. Li, X. Huang, Large-scale uniform alpha-Co(OH)2 long nanowire arrays grown on graphite as pseudocapacitor electrodes. ACS Appl Mater Interfaces 3(1), 99–103 (2011)

    Article  CAS  Google Scholar 

  23. X. Liu, C. Lai, Z. Xiao, S. Zou, K. Liu, Y. Yin, T. Liang, Z. Wu, Superb electrolyte penetration/absorption of three-dimensional porous carbon nanosheets for multifunctional supercapacitor. ACS Appl. Energy Mater. 2(5), 3185–3193 (2019)

    Article  CAS  Google Scholar 

  24. B. Yan, J. Liu, B. Song, P. Xiao, L. Lu, Li-rich thin film cathode prepared by pulsed laser deposition. Sci Rep 3, 3332 (2013)

    Article  Google Scholar 

  25. G. Li, L. Xu, Y. Zhai, Y. Hou, Fabrication of hierarchical porous MnCo2O4 and CoMn2O4 microspheres composed of polyhedral nanoparticles as promising anodes for long-life LIBs. J. Mater. Chem. A 3(27), 14298–14306 (2015)

    Article  CAS  Google Scholar 

  26. H. Li, L. Chen, P. Jin, Y. Li, J. Pang, J. Hou, S. Peng, G. Wang, Y. Shi, NiCo2S4 microspheres grown on N, S co-doped reduced graphene oxide as an efficient bifunctional electrocatalyst for overall water splitting in alkaline and neutral pH. Nano Res. 15(2), 950–958 (2021)

    Article  Google Scholar 

  27. J. Li, J. Li, L. Li, M. Yu, H. Ma, B. Zhang, Flexible graphene fibers prepared by chemical reduction-induced self-assembly. J. Mater. Chem. A 2(18), 6359 (2014)

    Article  CAS  Google Scholar 

  28. Y. Luo, X. Yang, L. He, Y. Zheng, J. Pang, L. Wang, R. Jiang, J. Hou, X. Guo, L. Chen, Structural and electronic modulation of iron-based bimetallic metal-organic framework bifunctional electrocatalysts for efficient overall water splitting in alkaline and seawater environment. ACS Appl Mater Interfaces 14(41), 46374–46385 (2022)

    Article  CAS  Google Scholar 

  29. S. Yuvaraj, A. Vignesh, S. Shanmugam, R. Kalai Selvan, Nitrogen-doped multi-walled carbon nanotubes-MnCo2O4 microsphere as electrocatalyst for efficient oxygen reduction reaction. Int. J. Hydrogen Energy 41(34), 15199–15207 (2016)

    Article  CAS  Google Scholar 

  30. Y. Liu, J. Li, W. Li, Y. Li, Q. Chen, F. Zhan, Nitrogen-doped graphene aerogel-supported spinel CoMn2O4 nanoparticles as an efficient catalyst for oxygen reduction reaction. J. Power Sources 299, 492–500 (2015)

    Article  CAS  Google Scholar 

  31. Z. Wang, Y. Liu, C. Gao, H. Jiang, J. Zhang, A porous Co(OH)2 material derived from a MOF template and its superior energy storage performance for supercapacitors. J. Mater. Chem. A 3(41), 20658–20663 (2015)

    Article  CAS  Google Scholar 

  32. Z. Tang, X. Zhang, L. Duan, A. Wu, W. Lu, Three-dimensional carbon nitride nanowire scaffold for flexible supercapacitors. Nanoscale Res Lett 14(1), 98 (2019)

    Article  Google Scholar 

  33. T. Inagaki, M. Nagaoka, Electrode polarization effects on interfacial kinetics of ionic liquid at graphite surface: an extended lagrangian-based constant potential molecular dynamics simulation study. J Comput Chem 40(24), 2131–2145 (2019)

    Article  CAS  Google Scholar 

  34. W. Feng, W. Pu, Y. Zheng, H. Wu, L. Li, X. Wei, Excellent rate capability supercapacitor electrodes with highly hydroxyl ion adsorption capacity enabled by P-doped MnCo2O4 nanotube arrays. Appl. Surface Sci. 599, 153908 (2022)

    Article  CAS  Google Scholar 

  35. Q. Xia, W. Cao, F. Xu, Y. Liu, W. Zhao, N. Chen, G. Du, Assembling MnCo2O4 nanoparticles embedded into MXene with effectively improved electrochemical performance. J. Energy Storage 47, 103906 (2022)

    Article  Google Scholar 

  36. M. Li, Z. Meng, R. Feng, K. Zhu, F. Zhao, C. Wang, J. Wang, L. Wang, P.K. Chu, Fabrication of bimetallic oxides (MCo2O4: M=Cu, Mn) on ordered microchannel electro-conductive plate for high-performance hybrid supercapacitors. Sustainability 13(17), 9896 (2021)

    Article  CAS  Google Scholar 

  37. J.S. Samdani, T.H. Kang, B.J. Lee, Y.H. Jang, J.S. Yu, S. Shanmugam, Heterostructured titanium oxynitride-manganese cobalt oxide nanorods as high-performance electrode materials for supercapacitor devices. ACS Appl Mater Interfaces 12(49), 54524–54536 (2020)

    Article  CAS  Google Scholar 

  38. M. He, L. Cao, W. Li, X. Chang, X. Zheng, Z. Ren, NiO nanoflakes decorated needle-like MnCo2O4 hierarchical structure on nickle foam as an additive-free and high performance supercapacitor electrode. J. Mater. Sci. 56(14), 8613–8626 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Jiangsu Higher Institutions Key Basic Research Projects of Natural Science (18KJA430003), Independent Research Project of Key Laboratory of Green Catalytic Materials and Technology of Jiangsu Province in 2018 (ZZZD201803) and Natural Science Research Plan of Huai'an in 2019 (HAB201952).

Author information

Authors and Affiliations

Authors

Contributions

WL: designed the experiments and discussed the results. XL: carried out the experiments, analysis, as well as prepared the manuscript. JS: helped with sample preparation. SZ, CY, and XL: gave technical support.

Corresponding author

Correspondence to Chao Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

All authors of this article have given informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Li, X., Sun, J. et al. MnCo2O4@Co(OH)2-g-C3N4 preparation of composite materials and their performance in supercapacitors. J Mater Sci: Mater Electron 34, 378 (2023). https://doi.org/10.1007/s10854-022-09753-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09753-x

Navigation