Skip to main content
Log in

The influence of facile pre-reaction on the morphology and electrochemical performance of MnO(OH)/Co(OH)2 composite for supercapacitor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

MnO(OH)/Co(OH)2 nanosheets composite electrode material (PMC) for high-performance supercapacitors were synthesized by solvothermal method with a facile pre-reaction process. The pre-reaction process is beneficial for the homogenous reaction and contributes to the formation of a larger specific surface area (180.9 m2 g−1), mesoporous structure, excellent electrical conductivity and therefore superior electrochemical performance. The as-prepared nanostructured PMC exhibits excellent electrochemical properties compared with the MnO(OH)/Co(OH)2 (MC) without the pre-reaction process. The PMC can achieve a specific capacitance of 412.5 F g−1 at 1 A g−1, which was nearly double that of the sample MC (236.0 F g−1) without the pre-reaction process. Meanwhile, PMC remains 80.9% of the initial specific capacitance at 10 A g−1 and shows excellent cycle stability retaining 97.6% after 8000 cycles at 10 A g−1. This facile pre-reaction process can be expected to be used for synthesis of other low-cost and high-performance electrode materials for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yu F, Wang T, Wen Z, Wang H (2017) High performance all-solid-state symmetric supercapacitor based on porous carbon made from a metal-organic framework compound. J Power Sources 364:9–15. https://doi.org/10.1016/j.jpowsour.2017.08.013

    Article  CAS  Google Scholar 

  2. Wang Y, Xia Y (2013) Recent progress in supercapacitors: from materials design to system construction. Adv Mater 25:5336–5342. https://doi.org/10.1002/adma.201301932

    Article  CAS  PubMed  Google Scholar 

  3. Yuan C, Yang L, Hou L, Shen L, Zhang X, Lou XW (2012) Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ Sci 5:7883–7887. https://doi.org/10.1039/C2EE21745G

    Article  CAS  Google Scholar 

  4. Li C, Zhang X, Wang K, Sun X, Liu G, Li J, Tian H, Li J, Ma Y (2017) Scalable self-propagating high-temperature synthesis of graphene for supercapacitors with superior power density and cyclic stability. Adv Mater 29:4690–4698. https://doi.org/10.1002/adma.201604690

    Article  CAS  Google Scholar 

  5. Chen L-F, Lu Y, Yu L, Lou XW (2017) Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ Sci 10:1777–1783. https://doi.org/10.1039/c7ee00488e

    Article  CAS  Google Scholar 

  6. Kou L, Huang T, Zheng B, Han Y, Zhao X, Gopalsamy K, Sun H, Gao C (2014) Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun 5:3754–3764. https://doi.org/10.1038/ncomms4754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors. Chem Rev 104:4245–4269. https://doi.org/10.1021/cr020730k

    Article  CAS  PubMed  Google Scholar 

  8. Burke A (2000) Ultracapacitors why, how, and where is the technology. J Power Sources 91:37–50. https://doi.org/10.1016/S0378-7753(00)00485-7

    Article  CAS  Google Scholar 

  9. Zhang F, Liu T, Li M, Yu M, Luo Y, Tong Y, Li Y (2017) Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett 17:3097–3104. https://doi.org/10.1021/acs.nanolett.7b00533

    Article  CAS  PubMed  Google Scholar 

  10. Yuan C, Li J, Hou L, Lin J, Zhang X, Xiong S (2013) Polymer-assisted synthesis of a 3D hierarchical porous network-like spinel NiCo2O4 framework towards high-performance electrochemical capacitors. J Mater Chem A 1:11145–11153. https://doi.org/10.1039/c3ta11949a

    Article  CAS  Google Scholar 

  11. Yuan C, Li J, Hou L, Zhang X, Shen L, Lou XWD (2012) Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv Funct Mater 22:4592–4597. https://doi.org/10.1002/adfm.201200994

    Article  CAS  Google Scholar 

  12. Almeida DAL, Couto AB, Ferreira NG (2019) Flexible polyaniline/reduced graphene oxide/carbon fiber composites applied as electrodes for supercapacitors. J Alloys Compd 788:453–460. https://doi.org/10.1016/j.jallcom.2019.02.194

    Article  CAS  Google Scholar 

  13. Ojha M, Deepa M (2019) Molybdenum selenide nanotubes decorated carbon net for a high performance supercapacitor. Chem Eng J 368:772–783. https://doi.org/10.1016/j.jallcom.2019.02.194

    Article  CAS  Google Scholar 

  14. Song Y, Yang J, Wang K, Haller S, Wang Y, Wang C, Xia Y (2016) In-situ synthesis of graphene/nitrogen-doped ordered mesoporous carbon nanosheet for supercapacitor application. Carbon 96:955–964. https://doi.org/10.1016/j.carbon.2015.10.060

    Article  CAS  Google Scholar 

  15. Liu S, Ni D, Li H-F, Hui KN, Ouyang C-Y, Jun SC (2018) Effect of cation substitution on the pseudocapacitive performance of spinel cobaltite MCo2O4 (M = Mn, Ni, Cu, and Co). J Mater Chem A 6:10674–10685. https://doi.org/10.1039/C8TA00540K

    Article  CAS  Google Scholar 

  16. Salunkhe RR, Kaneti YV, Yamauchi Y (2017) Metal-organic framework-derived nanoporous metal oxides toward Supercapacitor applications: progress and prospects. ACS Nano 11:5293–5308. https://doi.org/10.1021/acsnano.7b02796

    Article  CAS  PubMed  Google Scholar 

  17. Sun J, Lei E, Ma C, Wu Z, Xu Z, Liu Y, Li W, Liu S (2019) Fabrication of three-dimensional microtubular kapok fiber carbon aerogel/RuO2 composites for supercapacitors. Electrochim Acta 300:225–234. https://doi.org/10.1016/j.electacta.2019.01.095

    Article  CAS  Google Scholar 

  18. Samdani KJ, Kim SH, Park JH, Hong SH, Lee KT (2019) Morphology-controlled synthesis of Co3O4 composites with bio-inspired carbons as high-performance supercapacitor electrode materials. J Ind Eng Chem 74:96–102. https://doi.org/10.1016/j.jiec.2019.02.008

    Article  CAS  Google Scholar 

  19. Zhang Y, Yuan X, Lu W, Yan Y, Zhu J, Chou T-W (2019) MnO2 based sandwich structure electrode for supercapacitor with large voltage window and high mass loading. Chem Eng J 368:525–532. https://doi.org/10.1016/j.cej.2019.02.206

    Article  CAS  Google Scholar 

  20. Lee G, Jang J (2019) High-performance hybrid supercapacitors based on novel Co3O4/Co(OH)2 hybrids synthesized with various-sized metal-organic framework templates. J Power Sources 423:115–124. https://doi.org/10.1016/j.jpowsour.2019.03.065

    Article  CAS  Google Scholar 

  21. Zheng L, Guan L, Song J, Zheng H (2019) Rational design of a sandwiched structure Ni(OH)2 nanohybrid sustained by amino-functionalized graphene quantum dots for outstanding capacitance. Appl Surf Sci 480:727–737. https://doi.org/10.1016/j.apsusc.2019.02.243

    Article  CAS  Google Scholar 

  22. Wu X, Jiang L, Long C, Wei T, Fan Z (2015) Dual support system ensuring porous Co-Al hydroxide nanosheets with ultrahigh rate performance and high energy density for supercapacitors. Adv Funct Mater 25:1648–1655. https://doi.org/10.1002/adfm.201404142

    Article  CAS  Google Scholar 

  23. Yu X, Wang B, Gong D, Xu Z, Lu B (2017) Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable Al-ion batteries. Adv Mater 29:4418–4426. https://doi.org/10.1002/adma.201604118

    Article  CAS  Google Scholar 

  24. Mai LQ, Yang F, Zhao YL, Xu X, Xu L, Luo YZ (2011) Hierarchical MnMoO(4)/CoMoO(4) heterostructured nanowires with enhanced supercapacitor performance. Nat Commun 2:381–386. https://doi.org/10.1038/ncomms1387

    Article  CAS  PubMed  Google Scholar 

  25. Cai ZX, Wang ZL, Kim J, Yamauchi Y (2019) Hollow functional materials derived from metal-organic frameworks: synthetic strategies, conversion mechanisms, and electrochemical applications. Adv Mater 31:e1804903–e1804912. https://doi.org/10.1002/adma.201804903

    Article  CAS  PubMed  Google Scholar 

  26. Lee H-M, Muralee Gopi CVV, Rana PJS, Vinodh R, Kim S, Padma R, Kim H-J (2018) Hierarchical nanostructured MnCo2O4–NiCo2O4 composites as innovative electrodes for supercapacitor applications. New J Chem 42:17190–17194. https://doi.org/10.1039/C8NJ03764G

    Article  CAS  Google Scholar 

  27. Gao Y, Xia Y, Wan H, Xu X, Jiang S (2019) Enhanced cycle performance of hierarchical porous sphere MnCo2O4 for asymmetric supercapacitors. Electrochim Acta 301:294–303. https://doi.org/10.1016/j.electacta.2019.01.173

    Article  CAS  Google Scholar 

  28. Gao H, Li Y, Zhao H, Xiang J, Cao Y (2018) A general fabrication approach on spinel MCo2O4 (M = Co, Mn, Fe, Mg and Zn) submicron prisms as advanced positive materials for supercapacitor. Electrochim Acta 262:241–251. https://doi.org/10.1016/j.electacta.2018.01.020

    Article  CAS  Google Scholar 

  29. Su D, Tang Z, Xie J, Bian Z, Zhang J, Yang D, Zhang D, Wang J, Liu Y, Yuan A, Kong Q (2019) Co, Mn-LDH nanoneedle arrays grown on Ni foam for high performance supercapacitors. Appl Surf Sci 469:487–494. https://doi.org/10.1016/j.apsusc.2018.10.276

    Article  CAS  Google Scholar 

  30. Zhao J, Chen J, Xu S, Shao M, Yan D, Wei M, Evans DG, Duan X (2013) CoMn-layered double hydroxide nanowalls supported on carbon fibers for high-performance flexible energy storage devices. J Mater Chem A 1:8836–8844. https://doi.org/10.1039/c3ta11452j

    Article  CAS  Google Scholar 

  31. Wu N, Low J, Liu T, Yu J, Cao S (2017) Hierarchical hollow cages of Mn-Co layered double hydroxide as supercapacitor electrode materials. Appl Surf Sci 413:35–40. https://doi.org/10.1016/j.apsusc.2017.03.297

    Article  CAS  Google Scholar 

  32. Yang X, Xia H, Liang Z, Li H, Yu H (2017) Monodisperse carbon nanospheres with hierarchical porous structure as electrode material for supercapacitor. Nanoscale Res Lett 12:550–555. https://doi.org/10.1186/s11671-017-2318-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liang Z, Liu H, Zeng J, Zhou J, Li H, Xia H (2018) Facile synthesis of nitrogen-doped microporous carbon spheres for high performance symmetric supercapacitors. Nanoscale Res Lett 13:314–326. https://doi.org/10.1186/s11671-018-2713-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang M, Liu B, Chen H, Yang D, Li H (2019) N/O Co-doped porous carbons with layered structure for high-rate performance supercapacitors. ACS Sustain Chem Eng 7:11219–11227. https://doi.org/10.1021/acssuschemeng.9b00541

    Article  CAS  Google Scholar 

  35. Shrestha KR, Kandula S, Rajeshkhanna G, Srivastava M, Kim NH, Lee JH (2018) An advanced sandwich-type architecture of MnCo2O4@N–C@MnO2 as an efficient electrode material for a high-energy density hybrid asymmetric solid-state supercapacitor. J Mater Chem A 6:24509–24522. https://doi.org/10.1039/c8ta08976k

    Article  CAS  Google Scholar 

  36. Xu J, Sun Y, Lu M, Wang L, Zhang J, Tao E, Qian J, Liu X (2018) Fabrication of the porous MnCo2O4 nanorod arrays on Ni foam as an advanced electrode for asymmetric supercapacitors. Acta Mater 152:162–174. https://doi.org/10.1016/j.actamat.2018.04.025

    Article  CAS  Google Scholar 

  37. Yuvaraj S, Vignesh A, Shanmugam S, Kalai Selvan R (2016) Nitrogen-doped multi-walled carbon nanotubes-MnCo2O4 microsphere as electrocatalyst for efficient oxygen reduction reaction. Int J Hydrog Energy 41:15199–15207

    Article  CAS  Google Scholar 

  38. Cai N, Fu J, Chan V, Liu M, Chen W, Wang J, Zeng H, Yu F (2019) MnCo2O4@nitrogen-doped carbon nanofiber composites with meso-microporous structure for high-performance symmetric supercapacitors. J Alloys Compd 782:251–262. https://doi.org/10.1016/j.ijhydene.2016.06.115

    Article  CAS  Google Scholar 

  39. Ji Y, Xie J, Wu J, Yang Y, Fu X-Z, Sun R, Wong C-P (2018) Hierarchical nanothorns MnCo2O4 grown on porous/dense Ni bi-layers coated Cu wire current collectors for high performance flexible solid-state fiber supercapacitors. J Power Sources 393:54–61. https://doi.org/10.1016/j.jpowsour.2018.04.109

    Article  CAS  Google Scholar 

  40. Feng Y, Liu W, Sun L, Zhu Y, Chen Y, Meng M, Li J, Yang J, Zhang Y, Liu K (2018) Hierarchical MnCo2O4 @CoMoO4 core-shell nanowire arrays supported on Ni foam for supercapacitor. J Alloys Compd 753:761–770. https://doi.org/10.1016/j.jallcom.2018.04.217

    Article  CAS  Google Scholar 

  41. Hao P, Tian J, Sang Y, Tuan CC, Cui G, Shi X, Wong CP, Tang B, Liu H (2016) 1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability. Nanoscale 8:16292–16301. https://doi.org/10.1039/C6NR05385H

    Article  CAS  PubMed  Google Scholar 

  42. Peng S, Li L, Wu HB, Madhavi S, Lou XWD (2015) Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv Energy Mater 5:1401172–1401179. https://doi.org/10.1002/aenm.201401172

    Article  CAS  Google Scholar 

  43. Liu S, Kim KH, Yun JM, Kundu A, Sankar KV, Patil UM, Ray C, Chan Jun S (2017) 3D yolk–shell NiGa2S4 microspheres confined with nanosheets for high performance supercapacitors. J Mater Chem A 5:6292–6298. https://doi.org/10.1039/C7TA10140F

    Article  CAS  Google Scholar 

  44. Wang L, Guan Y, Zhao X, Mu J, Che H, Li H, Guo Z (2018) ZnCo2O4@MnCo2O4 heterojunction structured nanosheets for high-performance supercapacitor. J Mater Sci Mater Electron 29:5782–5790. https://doi.org/10.1007/s10854-018-8549-7

    Article  CAS  Google Scholar 

  45. Padmanathan N, Selladurai S (2013) Mesoporous MnCo2O4 spinel oxide nanostructure synthesized by solvothermal technique for supercapacitor. Ionics 20:479–487. https://doi.org/10.1007/s11581-013-1009-8

    Article  CAS  Google Scholar 

  46. Sahoo S, Naik KK, Rout CS (2015) Electrodeposition of spinel MnCo2O4 nanosheets for supercapacitor applications. Nanotechnology 26:455401–455410. https://doi.org/10.1088/0957-4484/26/45/455401

    Article  CAS  PubMed  Google Scholar 

  47. Che H, Liu A, Mu J, Wu C, Zhang X (2016) Template-free synthesis of novel flower-like MnCo2O4 hollow microspheres for application in supercapacitors. Ceram Int 42:2416–2424. https://doi.org/10.1016/j.ceramint.2015.10.041

    Article  CAS  Google Scholar 

  48. Li L, Zhang YQ, Liu XY, Shi SJ, Zhao XY, Zhang H, Ge X, Cai GF, Gu CD, Wang XL, Tu JP (2014) One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage. Electrochim Acta 116:467–474. https://doi.org/10.1016/j.electacta.2013.11.081

    Article  CAS  Google Scholar 

  49. Jayasubramaniyan S, Balasundari S, Rayjada PA, Kumar RA, Satyanarayana N, Muralidharan P (2018) Enhanced electrochemical performance of MnCo2O4 nanorods synthesized via microwave hydrothermal method for supercapacitor applications. J Mater Sci Mater Electron 29:21194–21204. https://doi.org/10.1007/s10854-018-0269-5

    Article  CAS  Google Scholar 

  50. Ren L, Chen J, Wang X, Zhi M, Wu J, Zhang X (2015) Facile synthesis of flower-like CoMn2O4 microspheres for electrochemical supercapacitors. RSC Adv 5:30963–30969. https://doi.org/10.1039/C5RA02663F

    Article  CAS  Google Scholar 

  51. Li X, Jiang L, Zhou C, Liu J, Zeng H (2015) Integrating large specific surface area and high conductivity in hydrogenated NiCo2O4 double-shell hollow spheres to improve supercapacitors. NPG Asia Materials 7:e165–e165. https://doi.org/10.1038/am.2015.11

    Article  CAS  Google Scholar 

  52. Deng F, Tie J, Lan B, Sun M, Peng S, Deng S, Li B, Sun W, Yu L (2015) NiCo2O4/MnO2 heterostructured nanosheet: influence of preparation conditions on its electrochemical properties. Electrochim Acta 176:359–368. https://doi.org/10.1016/j.electacta.2015.07.027

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Tianjin (16YFZCGX00250), Natural Science Foundation of Tianjin (18JCTPJC63000) and National Natural Science Foundation of China (51508384).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The influence of facile pre-reaction on the morphology and electrochemical performance of MnO(OH)/Co(OH)2 composite was reported for the first time.

• MnO(OH)/Co(OH)2 composite (PMC) shows a large specific surface area (180.9 m2 g−-1).

• MnO(OH)/Co(OH)2 composite (PMC) exhibits superior rate capability remains 80.9% of the initial specific capacitance 340.0 F g−-1 at 10A g−-1.

• MnO(OH)/Co(OH)2 composite (PMC) reveals excellent cycling stability retained 97.6% after 8000 cycles at 10A g−-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, X., Li, G. et al. The influence of facile pre-reaction on the morphology and electrochemical performance of MnO(OH)/Co(OH)2 composite for supercapacitor. Ionics 26, 2071–2079 (2020). https://doi.org/10.1007/s11581-019-03366-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03366-x

Keywords

Navigation