Skip to main content

Advertisement

Log in

The enhanced electrical energy storage properties of (Bi0.5Na0.5)TiO3–BaTiO3/graphene oxide heterogeneous structures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Heterogeneous structures of lead-free 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 solid-solution thin film and few-layer graphene oxide (GO) are prepared by using Langmuir–Blodgett (L–B) method, and their morphology, piezoelectric properties and electrical energy storage performances are investigated. It is found that the electrical breakdown strength of solid-solution thin film is significantly improved due to the covalently bonded GO nanosheets, resulting in the present of local fields that could be counteractive to the applied electric field. The heterostructures possess an outstanding electrical energy storage density as high as 4.26 J cm−3 at elevated temperatures (80–120 °C). The results demonstrate that the development of dielectrics-GO heterostructures is an effective approach in enhancing the energy storage density of dielectric capacitors for their practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6, 232–236 (2011)

    Article  CAS  Google Scholar 

  2. X. Chen, R. Paul, L. Dai, Carbon-based supercapacitors for efficient energy storage. Natl. Sci. Rev. 4, 453–489 (2017)

    Article  CAS  Google Scholar 

  3. Z. Yang, H. Guo, X. Li, Z. Wang, Z. Yan, Y. Wang, Natural sisal fibers derived hierarchical porous activated carbon as capacitive material in lithium ion capacitor. J. Power Sources 329, 339–346 (2016)

    Article  CAS  Google Scholar 

  4. H. Wang, Y. Yang, L. Guo, Nature-inspired electrochemical energy-storage materials and devices. Adv. Energy Mater. 7, 1–18 (2017)

    Article  Google Scholar 

  5. J. Pan, Y. Sun, W. Li, J. Knight, A. Manthiram, A green lead hydrometallurgical process based on a hydrogen-lead oxide fuel cell. Nat. Commun. 4, 1–6 (2013)

    Article  Google Scholar 

  6. N. Kittner, F. Lill, D.M. Kammen, Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2, 1–6 (2017)

    Article  Google Scholar 

  7. B. Xu, J. Íñiguez, L. Bellaiche, Designing lead-free antiferroelectrics for energy storage. Nat. Commun. 8, 1–8 (2017)

    Google Scholar 

  8. J. Ma, H. Pan, J. Ma, Q. Zhang, X. Liu, B. Guan, L. Gu, X. Zhang, Y.J. Zhang, L. Li, Y. Shen, Y.H. Lin, C.W. Nan, Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat. Commun. 9, 1–8 (2018)

    Google Scholar 

  9. F.P.G. Fengler, M. Pešić, S. Starschich, T. Schneller, C. Künneth, U. Böttger, H. Mulaosmanovic, T. Schenk, M.H. Park, R. Nigon, P. Muralt, T. Mikolajick, U. Schroeder, Domain pinning: comparison of Hafnia and PZT based ferroelectrics. Adv. Electron. Mater. 3, 1–10 (2017)

    Article  Google Scholar 

  10. M.K. Bhattarai, K.K. Mishra, S. Dugu, A.A. Instan, R.S. Katiyar, Ferroelectric ordering and energy storage density of thin films capacitor by doping La3+ and Sc3+ on pb(Zr0.53Ti0.47)O3 using pulse laser deposition technique. Appl. Phys. Lett. 114, 1–5 (2019)

    Article  Google Scholar 

  11. S. Jiang, L. Zhang, G. Zhang, S. Liu, J. Yi, X. Xiong, Y. Yu, J. He, Y. Zeng, Effect of Zr:Sn ratio in the lead lanthanum zirconate stannate titanate anti-ferroelectric ceramics on energy storage properties. Ceram. Int. 39, 5571–5575 (2013)

    Article  CAS  Google Scholar 

  12. B.Z. Shen, Y. Li, X. Hao, Multifunctional all-inorganic flexible capacitor for energy storage and electrocaloric refrigeration over a broad temperature range based on PLZT 9/65/35 thick films. ACS Appl. Mater. Interfaces 11, 34117–34127 (2019)

    Article  CAS  Google Scholar 

  13. R. Xu, Q. Zhu, Z. Xu, Y. Feng, X. Wei, PLZST antiferroelectric ceramics with promising energy storage and discharge performance for high power 24 applications. J. Am. Ceram. Soc. 103, 1831–1838 (2020)

    Article  CAS  Google Scholar 

  14. R. Xu, J. Tian, Q. Zhu, T. Zhao, Y. Feng, X. Wei, Z. Xu, Effects of phase transition on discharge properties of PLZST antiferroelectric ceramics. J. Am. Ceram. Soc. 100, 3618–3625 (2017)

    Article  CAS  Google Scholar 

  15. K. Han, N. Luo, S. Mao, F. Zhuo, L. Liu, B. Peng, X. Chen, C. Hu, H. Zhou, Y. Wei, Ultrahigh energy-storage density in A-/B-site co-doped AgNbO3 lead-free antiferroelectric ceramics: insight into the origin of antiferroelectricity. J. Mater. Chem. A 7, 26293–26301 (2019)

    Article  CAS  Google Scholar 

  16. J. Qi, M. Cao, Y. Chen, Z. He, C. Tao, H. Hao, Z. Yao, H. Liu, Cerium doped strontium titanate with stable high permittivity and low dielectric loss. J. Alloys Compd. 772, 1105–1112 (2019)

    Article  CAS  Google Scholar 

  17. Y. Qiao, W. Li, Y. Zhang, L. Jing, X. Yang, C. Gao, W. Cao, W. Fei, Ba and mg co-doping to suppress high-temperature dielectric loss in lead-free Na0.5Bi0.5TiO3-based systems. J. Eur. Ceram. Soc. 40, 720–727 (2020)

    Article  CAS  Google Scholar 

  18. Z. Liu, P. Ren, C. Long, X. Wang, Y. Wan, G. Zhao, Enhanced energy storage properties of NaNbO3 and SrZrO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Alloys Compd. 721, 538–544 (2017). https://doi.org/10.1016/j.jallcom.2017.05.162

    Article  CAS  Google Scholar 

  19. W. Ma, Y. Zhu, M.A. Marwat, P. Fan, B. Xie, D. Salamon, Z.G. Ye, H. Zhang, Enhanced energy-storage performance with excellent stability under low electric fields in BNT-ST relaxor ferroelectric ceramics. J. Mater. Chem. C 7, 281–288 (2019)

    Article  CAS  Google Scholar 

  20. P. Chen, S. Wu, P. Li, J. Zhai, B. Shen, Great enhancement of energy storage density and power density in BNBT/:X BFO multilayer thin film hetero-structures. Inorg. Chem. Front. 5, 2300–2305 (2018)

    Article  CAS  Google Scholar 

  21. Z. Han, K. Zhan, X. Wang, G. Zheng, J. Yang, Scalable piezoelectricity in graphene oxide papers tuned by hydrogen bonds. Adv. Electron. Mater. 2, 1–7 (2016)

    Article  Google Scholar 

  22. Z. Han, S. Ullah, G. Zheng, H. Yin, J. Zhao, S. Cheng, X. Wang, J. Yang, The thermal-to-electrical energy conversion in (Bi0.5Na0.5)0.94Ba0.06TiO3/graphene oxide heterogeneous structures. Ceram. Int. 45, 24493–24499 (2019)

    Article  Google Scholar 

  23. Z. Han, Z. Tang, P. Li, G. Yang, Q. Zheng, J. Yang, Ammonia solution strengthened three-dimensional macro-porous graphene aerogel. Nanoscale 5, 5462–5467 (2013)

    Article  CAS  Google Scholar 

  24. Q. Zheng, W.H. Ip, X. Lin, N. Yousefi, K.K. Yeung, Z. Li, J.K. Kim, Transparent conductive films consisting of ultralarge graphene sheets produced 26 by Langmuir-Blodgett assembly. ACS Nano 5, 6039–6051 (2011)

    Article  CAS  Google Scholar 

  25. M. Maraj, W. Wei, B. Peng, W. Sun, Dielectric and energy storage properties of ba(1–x)CaxZryTi(1−y)O3 (BCZT): a review. Materials (Basel) 12, 1–27 (2019)

    Article  Google Scholar 

  26. A. Mahajan, H. Zhang, J. Wu, E.V. Ramana, M.J. Reece, H. Yan, Effect of phase transitions on thermal depoling in lead-free 0.94(Bi0.5Na0.5TiO3)-0.06(BaTiO3) based Piezoelectrics. J. Phys. Chem. C 121, 5709–5718 (2017)

    Article  CAS  Google Scholar 

  27. S. Hajra, S. Sahoo, M. De, P.K. Rout, H.S. Tewari, R.N.P. Choudhary, Structural and electrical characteristics of barium modified bismuth-sodium titanate (Bi0.49Na0.49Ba0.02)TiO3. J. Mater. Sci. Mater. Electron. 29, 1463–1472 (2018)

    Article  CAS  Google Scholar 

  28. N.V. Medhekar, A. Ramasubramaniam, R.S. Ruoff, V.B. Shenoy, Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties. ACS Nano 4, 2300–2306 (2010)

    Article  CAS  Google Scholar 

  29. M. Chandrasekhar, P. Kumar, Synthesis and characterizations of BNT-BT and BNT-BT-KNN ceramics for actuator and energy storage applications. Ceram. Int. 41, 5574–5580 (2015)

    Article  CAS  Google Scholar 

  30. Q. Xu, M.T. Lanagan, X. Huang, J. Xie, L. Zhang, H. Hao, H. Liu, Dielectric behavior and impedance spectroscopy in lead-free BNT-BT-NBN perovskite ceramics for energy storage. Ceram. Int. 42, 9728–9736 (2016)

    Article  CAS  Google Scholar 

  31. C. Wang, X. Lou, T. Xia, S. Tian, The dielectric, strain and energy storage density of BNT-BKHxT1–x piezoelectric ceramics. Ceram. Int. 43, 9253–9258 (2017)

    Article  CAS  Google Scholar 

  32. M. Yao, Y. Pu, H. Zheng, L. Zhang, M. Chen, Y. Cui, Improved energy storage density in 0.475BNT-0.525BCTZ with MgO addition. Ceram. Int. 42, 8974–8979 (2016)

    Article  CAS  Google Scholar 

  33. Y. Wang, Z. Lv, H. Xie, J. Cao, High energy-storage properties of [(Bi1/2Na1/2)0.94Ba0.06]La(1−x)ZrxTiO3 lead-free anti-ferroelectric ceramics. Ceram. Int. 40, 4323–4326 (2014)

    Article  CAS  Google Scholar 

  34. M. Chandrasekhar, P. Sonia, Kumar, Synthesis and characterizations of NaNbO3 modified BNT-BT-BKT ceramics for energy storage applications. Phys. B: Condens. Matter 497, 59–66 (2016)

    Article  CAS  Google Scholar 

  35. L. Luo, B. Wang, X. Jiang, W. Li, Energy storage properties of (1−x)(Bi0.5Na0.5)TiO3−xKNbO3 lead-free ceramics. J. Mater. Sci. 49, 1659–1665 (2014)

    Article  CAS  Google Scholar 

  36. H. Qi, R. Zuo, Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency. J. Mater. Chem. A 7, 3971–3978 (2019)

    Article  CAS  Google Scholar 

  37. X. Huang, L. Liu, S. Zhou, J. Zhao, Physical properties and device applications of graphene oxide. Front. Phys. 15, 33301 (2020)

    Article  Google Scholar 

  38. D.W. Boukhvalov, A.I. Kukharenko, S.O. Cholakh, J.L. Menéndez, L. Fernández-García, E.Z. Kurmaev, Interaction of graphene oxide with barium titanate in composite: XPS and DFT studies. J. Alloys Compd. 840, 155747 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, the Postdoctoral Fellowship Scheme of Hong Kong Polytechnic University (Grant No. #1-YW3F).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by ZH, GZ and TL. The first draft of the manuscript was written by ZH. and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guangping Zheng.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3927.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Li, T. & Zheng, G. The enhanced electrical energy storage properties of (Bi0.5Na0.5)TiO3–BaTiO3/graphene oxide heterogeneous structures. J Mater Sci: Mater Electron 34, 147 (2023). https://doi.org/10.1007/s10854-022-09623-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09623-6

Navigation