Skip to main content
Log in

The structural, electronic, magnetic, optical and vibrational properties of the delafossite CuAlO2: DFT calculations and experimental study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Due to its electro-optical properties, the delafossite CuAlO2 is a potential candidate for energy conversion. Here, employing the Density Functional Theory (DFT), we performed the first-principles study of the electronic, dielectric, and dynamical properties of CuAlO2. The structural study shows a good agreement between the experimental and theoretical data. The electronic properties of CuAlO2 are investigated by the calculation of the band structure and the total and partial density of states. The optical gap (1.95 eV), indirectly allowed, is slightly over-estimated compared to the experiment value (1.96 eV), determined by diffuse reflectance. The diamagnetism conforms with closed-shell configurations of Cu+ (3d10) and Al3+ which obey the octet and 18 electron rules, respectively. However, a Curie constant of 0.014 uem CGS mol−1 with a slight paramagnetism is ascribed to the small amount of inserted O2− species with concomitant oxidation of Cu+ to Cu2+. The calculated Born effective charges are close to the nominal charges of the ions. Calculation of the full phonon dispersion spectrum with the atomic displacements allows a better understanding of the vibrational properties of CuAlO2: The Raman active modes (Eg and A1g) exhibit an O-site character while the infrared active modes (A2u and Eu) are featured by a combined shift of the three atoms. The photo-electrochemistry confirms the p-type behavior with a valence band edge of 5.35 eV below a vacuum, made up of Cu+: 3d orbital and far from the theoretical value of 6.9 eV. The discrepancy can be due to the fact that theoretical values are calculated at 0 Kelvin and at the point of zero charge (pzc).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of the study are available within the included “figure” and “table” files.

Notes

  1. Calculated from Al metal crystallizing in a face centered cubic structure with a lattice constant of 0.405 nm.

References

  1. R. Brahimi, B. Bellal, Y. Bessekhouad, A. Bouguelia, M. Trari, J. Cryst. Growth 310, 4325 (2008)

    Article  CAS  Google Scholar 

  2. F. Saib, F. Özel, A. Sarılmaz, O. Mahroua, B. Bellal, M. Trari, Mater. Sci. Semicond. Process. 91, 174 (2019)

    Article  CAS  Google Scholar 

  3. S. Omeiri, B. Bellal, A. Bouguelia, Y. Bessekhouad, M. Trari, J. Solid State Electrochem. 13, 1395 (2009)

    Article  CAS  Google Scholar 

  4. K. Mahmood, S. Abbasi, R. Zahra, U. Rehman, Ceram. Int. 44, 17905 (2018)

    Article  CAS  Google Scholar 

  5. N. Koriche, A. Bouguelia, A. Aider, M. Trari, Int. J. Hydrogen Energy 30, 693 (2005)

    Article  CAS  Google Scholar 

  6. A.N. Banerjee, R. Maity, P.K. Ghosh, K.K. Chattopadhyay, Thin Solid Films 474, 261 (2005)

    Article  CAS  Google Scholar 

  7. J.-C. Lee, S.-Y. Um, Y.-W. Heo, J.-H. Lee, J.-J. Kim, J. Eur. Ceram. Soc. 30, 509 (2010)

    Article  CAS  Google Scholar 

  8. S.H. Chiu, J.C.A. Huang, Surf. Coatings Technol. 231, 239 (2013)

    Article  CAS  Google Scholar 

  9. G. Li, X. Zhu, H. Lei, H. Jiang, W. Song, Z. Yang, J. Dai, Y. Sun, X. Pan, S. Dai, J. Sol-Gel Sci. Technol. 53, 641 (2010)

    Article  CAS  Google Scholar 

  10. G. Dong, M. Zhang, W. Lan, P. Dong, H. Yan, Vacuum 82, 1321 (2008)

    Article  CAS  Google Scholar 

  11. D.P. Rai, C.E. Ekuma, A. Boochani, S. Solaymani, R.K. Thapa, J. Appl. Phys. 123, 161509 (2018)

    Article  Google Scholar 

  12. F.A. Benko, F.P. Koffyberg, J. Phys. Chem. Solids 45, 57 (1984)

    Article  CAS  Google Scholar 

  13. M. Trari, A. Bouguelia, Y. Bessekhouad, Sol. Energy Mater. Sol. Cells 90, 190 (2006)

    Article  CAS  Google Scholar 

  14. B. Tong, Z. Deng, B. Xu, G. Meng, J. Shao, H. Liu, T. Dai, X. Shan, W. Dong, S. Wang, S. Zhou, R. Tao, X. Fang, A.C.S. Appl, Mater. Interfaces 10, 34727 (2018)

    Article  CAS  Google Scholar 

  15. Q.-L. Liu, Z.-Y. Zhao, R.-D. Zhao, J.-H. Yi, J. Alloys Compd. 819, 153032 (2020)

    Article  CAS  Google Scholar 

  16. H.N. Abdelhamid, Mater. Sci. Forum 832, 28 (2015)

    Article  Google Scholar 

  17. R. Brahimi, G. Rekhila, M. Trari, Y. Bessekhouad, Crystallogr. Reports 59, 1088 (2014)

    Article  CAS  Google Scholar 

  18. N. Benreguia, A. Barnabé, M. Trari, J. Sol-Gel Sci. Technol. 75, 670 (2015)

    Article  CAS  Google Scholar 

  19. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC press, 2004).

  20. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  Google Scholar 

  21. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  Google Scholar 

  22. X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, Comput. Phys. Commun. 180, 2582 (2009)

    Article  CAS  Google Scholar 

  23. M.J. van Setten, M. Giantomassi, E. Bousquet, M.J. Verstraete, D.R. Hamann, X. Gonze, G.-M. Rignanese, Comput. Phys. Commun. 226, 39 (2018)

    Article  Google Scholar 

  24. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  25. S. Baroni, S. De Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)

    Article  CAS  Google Scholar 

  26. X. Gonze, C. Lee, Phys. Rev. B 55, 10355 (1997)

    Article  CAS  Google Scholar 

  27. X. Nie, S.-H. Wei, S.B. Zhang, Phys. Rev. Lett. 88, 66405 (2002)

    Article  Google Scholar 

  28. Q.-J. Liu, Z.-T. Liu, Q.-Q. Gao, L.-P. Feng, H. Tian, F. Yan, W. Zeng, Phys. Lett. A 375, 1608 (2011)

    Article  CAS  Google Scholar 

  29. C.K. Ghosh, D. Sarkar, M.K. Mitra, K.K. Chattopadhyay, J. Phys. Condens. Matter 24, 235501 (2012)

    Article  CAS  Google Scholar 

  30. J. Pellicer-Porres, D. Martinez-Garcia, A. Segura, P. Rodriguez-Hernandez, A. Munoz, J.C. Chervin, N. Garro, D. Kim, Phys. Rev. B 74, 184301 (2006)

    Article  Google Scholar 

  31. R.D. Shannon, D.B. Rogers, C.T. Prewitt, J.L. Gillson, Inorg. Chem. 10, 723 (1971)

    Article  CAS  Google Scholar 

  32. H. Yanagi, S. Inoue, K. Ueda, H. Kawazoe, H. Hosono, N. Hamada, J. Appl. Phys. 88, 4159 (2000)

    Article  CAS  Google Scholar 

  33. B.J. Ingram, T.O. Mason, R. Asahi, K.T. Park, A.J. Freeman, Phys. Rev. B 64, 155114 (2001)

    Article  Google Scholar 

  34. M. Veithen, P. Ghosez, Phys. Rev. B 65, 214302 (2002)

    Article  Google Scholar 

  35. M. Khedidji, D. Amoroso, H. Djani, Phys. Rev. B 103, 14116 (2021)

    Article  CAS  Google Scholar 

  36. M. Khedidji, J. Solid State Chem. 312, 123177 (2022)

    Article  CAS  Google Scholar 

  37. P. Ghosez, E. Cockayne, U.V. Waghmare, K.M. Rabe, Phys. Rev. B 60, 836 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MK, FS, OM, and MT contributed to the provided roles: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing—original draft, Writing—review and editing.

Corresponding author

Correspondence to Mohamed Khedidji.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with humain participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khedidji, M., Saib, F., Mahroua, O. et al. The structural, electronic, magnetic, optical and vibrational properties of the delafossite CuAlO2: DFT calculations and experimental study. J Mater Sci: Mater Electron 33, 26474–26483 (2022). https://doi.org/10.1007/s10854-022-09326-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09326-y

Navigation