Skip to main content
Log in

Synthesis of C/NiFe-LDH composites for enhanced electromagnetic wave absorption

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hydrotalcites are layered double metal hydroxides (LDH) that are widely used in many fields, owing to their large specific surface area, rich interface, and stable structure. Of these, NiFe-LDH is the most typical material used in the field of electromagnetic wave absorption. In this study, NiFe-LDH was synthesized by hydrothermal synthesis and subjected to liquid-phase shearing with graphite to synthesize the composite material C/NiFe-LDH. The results show that C/NiFe-LDH displays a strong electromagnetic wave absorption capacity, with a maximum reflection loss of − 51.8 dB at a thickness of 3.5 mm. The maximum effective absorption bandwidth is 4 GHz (10.8–14.8 GHz). Therefore, C/NiFe-LDH is expected to become a candidate material for efficient electromagnetic wave absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data used to support the findings of this study are included within the article.

Abbreviations

EM:

Electromagnetic

f E :

Effective absorption bandwidth

H c :

Coercivity

HRTEM:

High-resolution transmission electron microscopy

LDH:

Layered double metal hydroxide

M s :

Saturation magnetization

RL:

Reflection loss

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

VNA:

Vector network analyzer

VSM:

Vibrating sample magnetometry

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

References

  1. L.J. Yang, X.D. Zhou, Z.R. Jia, H.L. Lv, Y.T. Zhu, J.C. Liu, Z.H. Yang, Selective tailoring of covalent bonds on graphitized hollow carbon spheres towards controllable porous structure and wideband electromagnetic absorption. Carbon 167, 843–851 (2020)

    Article  CAS  Google Scholar 

  2. M.A. Kazakova, N.V. Semikolenova, E.Y. Korovin, V.A. Zhuravlev, A.G. Selyutin, D.A. Velikanov, S.I. Moseenkov, A.S. Andreev, O.B. Lapina, V.I. Suslyaev, M.A. Matsko, V.A. Zakharov, J.B.D. de Lacaillerie, Co/multi-walled carbon nanotubes/polyethylene composites for microwave absorption: tuning the effectiveness of electromagnetic shielding by varying the components ratio. Compos. Sci. Technol. 207, 108731 (2021)

    Article  CAS  Google Scholar 

  3. Y.Y. Zhou, L.Y. Ma, R. Li, D. Chen, Y.Y. Lu, Y.Y. Cheng, X.X. Luo, H. Xie, W.C. Zhou, Enhanced heat-resistance property of aluminum-coated carbonyl iron particles as microwave absorption materials. J. Magn. Magn. Mater. 524, 167681 (2021)

    Article  CAS  Google Scholar 

  4. C. Wang, T.T. Xu, C.A. Wang, Microwave absorption properties of C/(C@CoFe) hierarchical core-shell spheres synthesized by using colloidal carbon spheres as templates. Ceram. Int. 42, 9178–9182 (2016)

    Article  CAS  Google Scholar 

  5. Y.H. Hou, H.L. Yuan, X.L. Qu, H. Chen, L.C. Li, Synthesis and high-performance electromagnetic wave absorption of SiC@C composites. Mater. Lett. 209, 90–93 (2017)

    Article  CAS  Google Scholar 

  6. Y. Lu, P.G. Yang, Y.H. Li, D.D. Wen, J.S. Luo, S.H. Wang, F. Wu, L. Fang, Y. Pang, A facile synthesis of NiFe-layered double hydroxide and mixed metal oxide with excellent microwave absorption properties. Molecules 26, 5046 (2021)

    Article  CAS  Google Scholar 

  7. Z.X. Zhou, W.J. Zhao, Z.W. Zhao, H.Q. Fu, Boosted interfacial polarization from the multidimensional core-shell-flat heterostructure CNP@PDA@GO/rGO for enhanced microwave absorption. Ind. Eng. Chem. Res. 60, 12343–12352 (2021)

    Article  CAS  Google Scholar 

  8. Z.H. Wang, L.X. Yang, Y. Zhou, C. Xu, M. Yan, C. Wu, NiFe LDH/MXene derivatives interconnected with carbon fabric for flexible electromagnetic wave absorption. ACS Appl. Mater. Interfaces 13, 16713–16721 (2021)

    Article  CAS  Google Scholar 

  9. T.T. Yu, J.F. Qiu, J. Liao, X.Y. Wang, W. Chen, Y. Cheng, W. Wang, Y.F. Song, Topological transformation strategy for layered double hydroxide@carbon nanofibers as highly efficient electromagnetic wave absorber. J. Alloy. Compd. 867, 159046 (2021)

    Article  CAS  Google Scholar 

  10. Y.R. Lai, S.Y. Wang, D.L. Qian, S.T. Zhong, Y.P. Wang, S.J. Han, W. Jiang, Tunable electromagnetic wave absorption properties of nickel microspheres decorated reduced graphene oxide. Ceram. Int. 43, 12904–12914 (2017)

    Article  CAS  Google Scholar 

  11. X. Zhang, J. Xu, X.Y. Liu, S. Zhang, H.R. Yuan, C.L. Zhu, X.T. Zhang, Y.J. Chen, Metal organic framework-derived three-dimensional graphene-supported nitrogen-doped carbon nanotube spheres for electromagnetic wave absorption with ultralow filler mass loading. Carbon 155, 233–242 (2019)

    Article  CAS  Google Scholar 

  12. J. Yan, X.D. Zhang, W.R. Zheng, L.Y.S. Lee, Interface engineering of a 2D–C3N4/NiFe-LDH heterostructure for highly efficient photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 13, 24723–24733 (2021)

    Article  CAS  Google Scholar 

  13. Z.Y. Zhao, Q. Shao, J.Y. Xue, B.L. Huang, Z. Niu, H.W. Gu, X.Q. Huang, J.P. Lang, Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction. Nano Res. 15, 310–316 (2021)

    Article  Google Scholar 

  14. B.B. Jiang, W.C. Cheong, R.Y. Tu, K. Sun, S.J. Liu, K.L. Wu, H.S. Shang, A.J. Huang, M. Wang, L.R. Zheng, X.W. Wei, C. Chen, Regulating the electronic structure of NiFe layered double hydroxide/reduced graphene oxide by Mn incorporation for high-efficiency oxygen evolution reaction. Sci. China Mater. 64, 2729–2738 (2021)

    Article  CAS  Google Scholar 

  15. Q. Chang, H.S. Liang, B. Shi, X.L. Li, Y.T. Zhang, L.M. Zhang, H.J. Wu, Ethylenediamine-assisted hydrothermal synthesis of NiCo2O4 absorber with controlled morphology and excellent absorbing performance. J. Colloid Interface Sci. 588, 336–345 (2021)

    Article  CAS  Google Scholar 

  16. Q.L. Sun, L. Sun, Y.Y. Cai, W. Ye, S.J. Xu, T. Ji, G.Q. Yuan, Fe3O4-intercalated reduced graphene oxide nanocomposites with enhanced microwave absorption propertiesm. Ceram. Int. 45, 18298–18305 (2019)

    Article  CAS  Google Scholar 

  17. Q.L. Sun, Y. Ji, L.F. He, X.Y. Long, In situformation of Fe3O4/N-doped carbon coating on the surface of carbon fiber with improved electromagnetic wave-absorption property. RSC Adv. 10, 30443–30450 (2020)

    Article  CAS  Google Scholar 

  18. C. Li, Y. Huang, J.J. Chen, Dopamine-assisted one-pot synthesis of graphene@Ni@C composites and their enhanced microwave absorption performance. Mater. Lett. 154, 136–139 (2015)

    Article  CAS  Google Scholar 

  19. D. An, L.Z. Bai, S.S. Cheng, Z.Y. Zhang, X.Y. Duan, Z.J. Sun, Y.Q. Liu, Synthesis and electromagnetic wave absorption properties of three-dimensional nano-flower structure of MoS2/polyaniline nanocomposites. J. Mater. Sci. Mater. Electron. 30, 13948–13956 (2019)

    Article  CAS  Google Scholar 

  20. C. Liu, J. Qiao, X. Zhang, D.M. Xu, N.N. Wu, L.F. Lv, W. Liu, J.R. Liu, Bimetallic MOF-derived porous CoNi/C nanocomposites with ultra-wide band microwave absorption properties. New J. Chem. 43, 16546–16554 (2019)

    Article  CAS  Google Scholar 

  21. Z.G. Gao, J.Q. Zhang, S.J. Zhang, D. Lan, Z.H. Zhao, K.C. Kou, Strategies for electromagnetic wave absorbers derived from zeolite imidazole framework (ZIF-67) with ferrocene containing polymers. Polymer 202, 122679 (2020)

    Article  CAS  Google Scholar 

  22. Y. Liu, X.M. Du, C.Y. Wu, Y.N. Liu, Y.Q. Liu, G.Z. Zhao, Reduced graphene oxide decorated with ZnO microrods for efficient electromagnetic wave absorption performance. J. Mater. Sci. Mater. Electron. 31, 8637–8648 (2020)

    Article  CAS  Google Scholar 

  23. M. Qin, L.M. Zhang, X.R. Zhao, H.J. Wu, Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber. Adv. Funct. Mater. 31, 2103436 (2021)

    Article  CAS  Google Scholar 

  24. Y.C. Du, W.W. Liu, R. Qiang, Y. Wang, X.J. Han, J. Ma, P. Xu, Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 6, 12997–13006 (2014)

    Article  CAS  Google Scholar 

  25. F.Y. Wang, N. Wang, X.J. Han, D.W. Liu, Y.H. Wang, L.R. Cui, P. Xu, Y.C. Du, Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 145, 701–711 (2019)

    Article  CAS  Google Scholar 

  26. Z.J. Shen, H.L. Yang, Z.Q. Xiong, Y. Xie, C.B. Liu, Hollow core-shell CoNi@C and CoNi@NC composites as high-performance microwave absorbers. J. Alloy. Compd. 871, 159574 (2021)

    Article  CAS  Google Scholar 

  27. Z.J. Qu, Y. Wang, W. Wang, D. Yu, Robust magnetic and electromagnetic wave absorption performance of reduced graphene oxide loaded magnetic metal nanoparticle composites. Adv. Powder Technol. 32, 194–203 (2021)

    Article  CAS  Google Scholar 

  28. Y.Q. Ge, C.P. Li, G.I.N. Waterhouse, Z.M. Zhang, ZnFe2O4@PDA@polypyrrole composites with efficient electromagnetic wave absorption properties in the 18–40 GHz region. J. Mater. Sci. 56, 10876–10891 (2021)

    Article  CAS  Google Scholar 

  29. H.H. Liu, Y.J. Li, M.W. Yuan, G.B. Sun, H.F. Li, S.L. Ma, Q.L. Liao, Y. Zhang, In situ preparation of cobalt nanoparticles decorated in N-doped carbon nanofibers as excellent electromagnetic wave absorbers. ACS Appl. Mater. Interfaces 10, 22591–22601 (2018)

    Article  CAS  Google Scholar 

  30. M.L. Ma, W.T. Li, Z.Y. Tong, Y. Ma, Y.X. Bi, Z.J. Liao, J. Zhou, G.L. Wu, M.X. Li, J.W. Yue, X.Y. Song, X.Y. Zhang, NiCo2O4 nanosheets decorated on one-dimensional ZnFe2O4@SiO2@C nanochains with high-performance microwave absorption. J. Colloid Interface Sci. 578, 58–68 (2020)

    Article  CAS  Google Scholar 

  31. H.R. Yuan, F. Yan, C.Y. Li, C.L. Zhu, X.T. Zhang, Y.J. Chen, Nickel nanoparticle encapsulated in few-layer nitrogen-doped graphene supported by nitrogen-doped graphite sheets as a high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 10, 1399–1407 (2018)

    Article  CAS  Google Scholar 

  32. Q. Wu, B.L. Wang, Y.G. Fu, Z.F. Zhang, P.F. Yan, T. Liu, MOF-derived Co/CoO particles prepared by low temperature reduction for microwave absorption. Chem. Eng. J. 410, 128378 (2021)

    Article  CAS  Google Scholar 

  33. H.F. Qiu, X.Y. Zhu, P. Chen, J.L. Liu, X.L. Zhu, Self-etching template method to synthesize hollow dodecahedral carbon capsules embedded with Ni-Co alloy for high-performance electromagnetic microwave absorption. Compos. Commun. 20, 100354 (2020)

    Article  Google Scholar 

  34. S.H. Zhou, Y. Huang, X.D. Liu, J. Yan, X.S. Feng, Synthesis and microwave absorption enhancement of CoNi@SiO2@C hierarchical structures. Ind. Eng. Chem. Res. 57, 5507–5516 (2018)

    Article  CAS  Google Scholar 

  35. X.K. Wang, Y.K. Guan, R.R. Zhang, P.P. Zhou, Z. Song, M. Wang, L.X. Wang, Q.T. Zhang, Facile synthesis of cobalt nanoparticles embedded in a rod-like porous carbon matrix with excellent electromagnetic wave absorption performance. Ceram. Int. 47, 643–653 (2021)

    Article  Google Scholar 

  36. D. Ding, Y. Wang, X.D. Li, R. Qiang, P. Xu, W.L. Chu, X.J. Han, Y.C. Du, Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722–732 (2017)

    Article  CAS  Google Scholar 

  37. M.L. Dong, M.Y. Peng, W. Wei, H.J. Xu, C.T. Liu, C.Y. Shen, Improved microwave absorption performance of double helical C/Co@CNT nanocomposite with hierarchical structures. J. Mater. Chem. C 9, 2178–2189 (2021)

    Article  CAS  Google Scholar 

  38. D. Lan, Z.G. Gao, Z.H. Zhao, G.L. Wu, K.C. Kou, H.J. Wu, Double-shell hollow glass microspheres@Co2SiO4 for lightweight and efficient electromagnetic wave absorption. Chem. Eng. J. 408, 127313 (2021)

    Article  CAS  Google Scholar 

  39. W.Y. Dai, F. Chen, H. Luo, Y. Xiong, X. Wang, Y.Z. Cheng, R.Z. Gong, Synthesis of yolk-shell structured carbonyl iron@void@nitrogen doped carbon for enhanced microwave absorption performance. J. Alloy. Compd. 812, 152083 (2020)

    Article  CAS  Google Scholar 

  40. S. Li, L.F. Lin, L.X. Yao, H.F. Zheng, Q. Luo, W.J. Xu, C.Y. Zhang, Q.S. Xie, L.S. Wang, D.L. Peng, MOFs-derived Co-C@C hollow composites with high-performance electromagnetic wave absorption. J. Alloy. Compd. 856, 158183 (2021)

    Article  CAS  Google Scholar 

  41. H. Zhang, A.J. Xie, C.P. Wang, H.S. Wang, Y.H. Shen, X.Y. Tian, Room temperature fabrication of an RGO-Fe3O4 composite hydrogel and its excellent wave absorption properties. RSC Adv. 4, 14441–14446 (2014)

    Article  CAS  Google Scholar 

  42. D. Li, H.Y. Liao, H. Kikuchi, T. Liu, Microporous Co@C nanoparticles prepared by dealloying CoAl@C precursors: achieving strong wideband microwave absorption via controlling carbon shell thickness. ACS Appl. Mater. Interfaces 9, 44704–44714 (2017)

    Article  CAS  Google Scholar 

  43. Y. Liu, X.F. Zhou, Z.R. Jia, H.J. Wu, G.L. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 2204499, 1–10 (2022)

    Google Scholar 

  44. Y. Guo, X. Jian, L. Zhang, C.H. Mu, L.J. Yin, J.L. Xie, N. Mahmood, S.X. Dou, R.C. Che, L.J. Deng, Plasma-induced FeSiAl@Al2O3@SiO2 core-shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem. Eng. J. 384, 123371 (2020)

    Article  CAS  Google Scholar 

  45. Z.J. Li, H. Lin, S.Q. Ding, H.L. Ling, T. Wang, Z.Q. Miao, M. Zhang, A. Meng, Q.D. Li, Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. Carbon 167, 148–159 (2020)

    Article  CAS  Google Scholar 

  46. R.L. Wang, M. He, Y.M. Zhou, S.X. Nie, Y.J. Wang, W.Q. Liu, Q. He, W.T. Wu, X.H. Bu, X.M. Yang, Metal-organic frameworks self-templated cubic hollow Co/N/C@MnO2 composites for electromagnetic wave absorption. Carbon 156, 378–388 (2020)

    Article  CAS  Google Scholar 

  47. Y. Yuan, S.C. Wei, Y. Liang, B. Wang, Y.J. Wang, W. Xin, X.L. Wang, Y. Zhang, Solvothermal assisted synthesis of CoFe2O4/CNTs nanocomposite and their enhanced microwave absorbing properties. J. Alloy. Compd. 867, 159040 (2021)

    Article  CAS  Google Scholar 

  48. K. Manna, S.K. Srivastava, Fe3O4@carbon@polyaniline trilaminar core-shell composites as superior microwave absorber in shielding of electromagnetic pollution. ACS Sustain. Chem. Eng. 5, 10710–10721 (2017)

    Article  CAS  Google Scholar 

  49. M.T. Qiao, X.F. Lei, Y. Ma, L.D. Tian, X.W. He, K.H. Su, Q.Y. Zhang, Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 11, 1500–1519 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Nantong Science and Technology Project (JC2020083) and Basic Science (natural science) research project of Jiangsu Province (21KJA430010).

Author information

Authors and Affiliations

Authors

Contributions

RW was involved in methodology, investigation, writing the original draft, and writing—review and editing. QS was responsible for conceptualization and supervision. XL contributed to resources and funding acquisition. WY carried out data curation and validation. GY took part in conceptualization and formal analysis.

Corresponding author

Correspondence to Guoqiu Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Sun, Q., Long, X. et al. Synthesis of C/NiFe-LDH composites for enhanced electromagnetic wave absorption. J Mater Sci: Mater Electron 33, 24581–24593 (2022). https://doi.org/10.1007/s10854-022-09169-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09169-7

Navigation