Skip to main content
Log in

Reduced graphene oxide decorated with ZnO microrods for efficient electromagnetic wave absorption performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A composite RGO/ZnO-mrs, which is reduced graphene oxide (RGO) decorated with ZnO microrods (ZnO-mrs), with excellent electromagnetic wave absorbing performance was prepared by a simple mechanical mixing and direct freeze-drying method. The load of ZnO-mrs in this composite is controlled effectively by changing mass ratio of raw materials Zn(Ac)2·2H2O and graphene oxide (GO), then the balance between dielectric loss ability to electromagnetic wave and impedance matching with free space of the absorbing composite RGO/ZnO-mrs prepared can be obtained, and then its high-performance electromagnetic wave absorption ability. When mass ratio of GO to Zn(Ac)2·2H2O is 1:3, composite RGO/ZnO-mrs filled with only 15 wt% exhibits the most significant electromagnetic wave absorption properties, its minimum reflection loss (RLmin) value of − 38.5 dB is obtained at 15.4 GHz and effective absorption bandwidth (EAB) is up to 5.4 GHz (12.6–18 GHz) with a thickness of 2 mm only. The basic electromagnetic wave absorption mechanism of this composite is discussed systematically. All results demonstrate that composite RGO/ZnO-mrs in this study is very promising as a broadband absorption, light weight, especially with a simple and expandable preparing process electromagnetic wave absorber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Yan, C. Hong, B. Sun, G. Zhao, Y. Cheng, S. Dong, D. Zhang, X. Zhang, In situ growth of core-sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance. Acs. Appl. Mater. Interfaces 7, 6320–6331 (2017)

    Article  Google Scholar 

  2. P. Liu, Y. Huang, J. Yan, Y. Yang, Y. Zhao, Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties. Acs. Appl. Mater. Interfaces 8, 5536–5546 (2016)

    Article  CAS  Google Scholar 

  3. Y. Nariman, S. Xinying, L. Xiuyi, S. Xi, J. Jingjing, Z. Biao, T. Benzhong, C. Mansun, K. Jang-Kyo, Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2014)

    Article  Google Scholar 

  4. K. Luo, X. Yin, Y. Zhang, X. Yuan, L. Zhang, Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle glusters. J. Phys. Chem. C 117, 19701–19711 (2013)

    Article  Google Scholar 

  5. P. Liu, Y. Jing, X. Gao, H. Ying, Y. Zhang, Construction of layer-by-layer sandwiched graphene/polyaniline nanorods/carbon nanotubes heterostructures for high performance supercapacitors. Electrochim. Acta 272, 77–87 (2018)

    Article  CAS  Google Scholar 

  6. H. Chen, Z. Huang, Y. Huang, Y. Zhang, Z. Ge, B. Qin, Z. Liu, Q. Shi, P. Xiao, Y. Yang, T. Zhang, Y. Chen, Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon. 124, 506–514 (2017)

    Article  CAS  Google Scholar 

  7. Y. Zhang, Y. Huang, H. Chen, Z. Huang, Y. Yang, P. Xiao, Y. Zhou, Y. Chen, Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon. 105, 438–447 (2016)

    Article  CAS  Google Scholar 

  8. A. Abouimrane, O.C. Compton, K. Amine, S.B.T. Nguyen, Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J. Phys. Chem. C 29, 12800–12804 (2010)

    Article  Google Scholar 

  9. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: The new two-dimensional nanomaterial. Chem. Int. Edit. 48, 7752–7777 (2009)

    Article  CAS  Google Scholar 

  10. Z. Yi, H. Yi, Z. Tengfei, C. Huicong, X. Peishuang, C. Honghui, H. Zhiyu, C. Yongsheng, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 12, 2049–2053 (2015)

    Google Scholar 

  11. L. Zhu, X. Zeng, X. Li, B. Yang, R. Yu, Hydrothermal synthesis of magnetic Fe3O4/graphene composites with good electromagnetic microwave absorbing performances. J. Magn. Magn. Mater. 426, 114–120 (2017)

    Article  CAS  Google Scholar 

  12. Y.F. Bai, W.H. Ma, Y.A. Liu, Y. Liu, J.W. Xue, K. Xu, Y.Q. Liu, G.Z. Zhao, Preparation of graphene-carbonyl iron powder@tri-iron tetroxide composite and its better microwave absorption properties. J. Mater. Sci-Mater. El. 30, 5454–5463 (2019)

    Article  CAS  Google Scholar 

  13. X.Y. Liu, Y.Q. Gao, G.W. Yang, A flexible, transparent and super-long-life supercapacitor based on ultrafine Co3O4 nanocrystal electrodes. Nanoscale. 7, 4227–4235 (2016)

    Article  Google Scholar 

  14. N. Zhang, Y. Huang, M. Wang, 3D ferromagnetic graphene nanocomposites with ZnO nanorods and Fe3O4 nanoparticles co-decorated for efficient electromagnetic wave absorption. Composites B 136, 135–142 (2018)

    Article  CAS  Google Scholar 

  15. K. Xu, W. Ma, Y. Liu, Y. Bai, J. Xue, Y. Liu, G. Zhao, Y. Liu, Broadband and tunable highperformance microwave absorption composites reduced graphene oxide Ni. J. Mater. Sci-Mater. El. 30, 1–10 (2019)

    CAS  Google Scholar 

  16. Y.L. Jing, J. Guo Wen, F.R. Zhi, Hierarchical ZnO nanostructures. Nano Lett. 11, 1287–1291 (2002)

    Google Scholar 

  17. Ü Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 4, 11–11 (2005)

  18. C. Song, X. Yin, M. Han, X. Li, Z. Hou, L. Zhang, L. Cheng, Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon. 116, 50–58 (2017)

    Article  CAS  Google Scholar 

  19. W. Feng, Y. Wang, J. Chen, L. Guo, J. Ouyang, D. Jia, Y. Zhou, Microwave absorbing property optimization of starlike ZnO/reduced graphene oxide doped by ZnO nanocrystal composites. Phys. Chem. Chem. Phys. 19, 14596–14605 (2017)

    Article  CAS  Google Scholar 

  20. S. Yang, X. Guo, P. Chen, D.W. Xu, H.F. Qiu, X.Y. Zhu, Two-step synthesis of self-assembled 3D graphene/shuttle-shaped zinc oxide (ZnO) nanocomposites for high-performance microwave absorption. J. Alloys Compd. 797, 1310–1319 (2019)

    Article  CAS  Google Scholar 

  21. L. Tang, W. Ying, Y. Li, H. Feng, J. Li, Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv.Funct. Mater. 17, 2782–2789 (2009)

    Article  Google Scholar 

  22. D. Qi, L. Zheng, X. Cao, Y. Jiang, H. Xu, Y. Zhang, B. Yang, Y. Sun, H.H. Hng, N. Lu, Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity. Nanoscale. 5, 12383–12387 (2013)

    Article  CAS  Google Scholar 

  23. Z. Yanwu, M. Shanthi, C. Weiwei, L. Xuesong, S.J. Won, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 35, 3906–3924 (2010)

    Google Scholar 

  24. N.J. Bell, H.N. Yun, A. Du, H. Coster, S.C. Smith, R. Amal, Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J. Phy. Chem. C. 13, 6004–6009 (2011)

    Article  Google Scholar 

  25. S. Pei, C.H.E.N.G. HuiMing, The reduction of graphene oxide. Carbon. 9, 3210–3228 (2012)

    Article  Google Scholar 

  26. Z. Yi, H. Yi, H. Chen, Z. Huang, Y. Yang, P. Xiao, Z. Ying, Y. Chen, Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon. 105, 438–447 (2016)

    Article  Google Scholar 

  27. M. Han, X. Yin, L. Kong, M. Li, W. Duan, L. Zhang, L. Cheng, Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A. 39, 16403–16409 (2014)

    Article  Google Scholar 

  28. X. Jian, B. Wu, Y. Wei, S. Dou, X. Wang, W. He, N. Mahmood, Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. Acs. Appl. Mater. Interfaces 8, 6101 (2016)

    Article  CAS  Google Scholar 

  29. W.L. Song, M.S. Cao, B. Wen, Z.L. Hou, J. Cheng, J. Yuan, Synthesis of zinc oxide particles coated multiwalled carbon nanotubes: dielectric properties, electromagnetic interference shielding and microwave absorption. Mater. Res. Bull. 7, 1747–1754 (2012)

    Article  Google Scholar 

  30. Y. Chen, A. Zhang, L. Ding, Y. Liu, H. Lu, A three-dimensional absorber hybrid with polar oxygen functional groups of MWNTs/graphene with enhanced microwave absorbing properties. Composites B 108, 386–392 (2017)

    Article  CAS  Google Scholar 

  31. W. Liu, S. Tan, Z. Yang, G. Ji, Hollow graphite spheres embedded in porous amorphous carbon matrices as lightweight and low-frequency microwave absorbing material through modulating dielectric loss. Carbon. 138, 143–153 (2018)

    Article  CAS  Google Scholar 

  32. J. Zou, Z. Wang, M. Yan, H. Bi, Enhanced interfacial polarization relaxation effect on microwave absorption properties of submicron-sized hollow Fe3O4 hemispheres. J. Phys. D Appl. Phys. 47, 275001 (2014)

    Article  Google Scholar 

  33. X. Bai, Y. Zhai, Y. Zhang, Green approach to prepare graphene-based composites with high microwave absorption capacity. J. Phys. Chem. C 115, 11673–11677 (2011)

    Article  CAS  Google Scholar 

  34. J. Fang, T. Liu, Z. Chen, Y. Wang, W. Wei, X. Yue, Z. Jiang, A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber. Nanoscale. 16, 8899–8909 (2016)

    Article  Google Scholar 

  35. S. Dai, B. Quan, B. Zhang, X. Liang, G. Ji, Constructing multi-interface Mo2C/Co@C nanorods for a microwave response based on a double attenuation mechanism. Dalton. Trans. 41, 14767–14773 (2018)

    Article  Google Scholar 

  36. W. Liu, L. Liu, Z. Yang, J. Xu, Y. Hou, G. Ji, A versatile route toward the electromagnetic functionalization of metal-organic framework-derived three-dimensional nanoporous carbon composites. Acs. Appl. Mater. Interface 10, 8965–8975 (2018)

    Article  CAS  Google Scholar 

  37. Z. Wang, L. Wu, J. Zhou, Z. Jiang, B. Shen, Chemoselectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption. Nanoscale 21, 12298–12302 (2014)

    Article  Google Scholar 

  38. K. Luo, X. Yin, Y. Zhang, X. Yuan, L. Quan, Y. Fang, L. Cheng, L. Zhang, Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C 117, 19701–19711 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Shanxi Province 1331 Project Key Innovation Team of Polymeric Functional New Materials and the Shanxi Province Innovative Disciplinary Group of New Materials Industry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaqing Liu or Guizhe Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Du, X., Wu, C. et al. Reduced graphene oxide decorated with ZnO microrods for efficient electromagnetic wave absorption performance. J Mater Sci: Mater Electron 31, 8637–8648 (2020). https://doi.org/10.1007/s10854-020-03399-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03399-3

Navigation